Ni-Fe-La(Sr)Fe(Mn)O3 as a New Active Cermet Cathode for Intermediate-Temperature CO2 Electrolysis Using a LaGaO3-Based Electrolyte
Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport numbe...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2015-01, Vol.5 (2), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 5 |
creator | Wang, Shijing Tsuruta, Hidekazu Asanuma, Minoru Ishihara, Tatsumi |
description | Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm−2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles ( |
doi_str_mv | 10.1002/aenm.201401003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1646986502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563464751</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3263-2b6e4777782d57c7c209fdf658687e31650e296ceb7dcfa8d8c9ba86966eada03</originalsourceid><addsrcrecordid>eNpFUE1PwkAUbIwmGuXqeRMvcljcj7Jtj0j4MnzECDHxsnm0r1iEFncXkau_3CUYnMt78zIzL5kguOWswRkTD4DluiEYD5mn8iy44oqHVMUhOz_tUlwGNWuXzCNMOJPyKvgZF7SLdAj3L6bexftRWZ9IApYAGeOOtFJXfCFpo1mjI21w71WGJK8MGZTucMwKcEinuN6gAbc1XjsRpLPC1JlqtbeFJTNblAufN4QeTCR9BIvZv8LhTXCRw8pi7W9eB7NuZ9ru0-GkN2i3hnQhhZJUzBWGkUcssmaURqlgSZ7lqhmrOELJVZOhSFSK8yhLc4izOE3mEKtEKYQMmLwO7o65G1N9btE6vay2pvQvNVehSmKfILwqOap2xQr3emOKNZi95kwfetaHnvWpZ93qjEcn5r306C2sw--TF8yHVpGMmvp13NNTxkb9p-c3LeQvO_KA5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646986502</pqid></control><display><type>article</type><title>Ni-Fe-La(Sr)Fe(Mn)O3 as a New Active Cermet Cathode for Intermediate-Temperature CO2 Electrolysis Using a LaGaO3-Based Electrolyte</title><source>Access via Wiley Online Library</source><creator>Wang, Shijing ; Tsuruta, Hidekazu ; Asanuma, Minoru ; Ishihara, Tatsumi</creator><creatorcontrib>Wang, Shijing ; Tsuruta, Hidekazu ; Asanuma, Minoru ; Ishihara, Tatsumi</creatorcontrib><description>Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm−2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles (<200 nm) are sustained under CO2 electrolysis conditions at high temperatures than for Ni–Fe. X‐ray diffraction analysis suggests that the main phases of Ni–Fe–LSFM are Ni and LaFeO3; thus, the oxide phase of LaFeO3 is also maintained during CO2 electrolysis. Analysis of the gaseous products indicates that only CO is formed, and the rate of CO formation agrees well with that of a four‐electron reduction process, suggesting that the reduction of CO2 to CO proceeds selectively. It is also confirmed that almost no coke is deposited on the Ni–Fe–LSFM cathode after CO2 electrolysis.
The addition of an oxide ion‐conducting phase to Ni–Fe renders a ceramic–metallic (cermet) cathode highly effective for CO2 electrolysis at lower temperatures. An increase in the number of available reaction sites and a reduction of the polarization resistance are observed for the Ni–Fe–LSFM cathode when compared to an optimized metallic cathode (Ni–Fe).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201401003</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>cermet cathodes ; coke deposition ; electrolysis ; Electrolytes ; gas conversion ; overpotential ; reaction sites ; Temperature</subject><ispartof>Advanced energy materials, 2015-01, Vol.5 (2), p.n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201401003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201401003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Shijing</creatorcontrib><creatorcontrib>Tsuruta, Hidekazu</creatorcontrib><creatorcontrib>Asanuma, Minoru</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><title>Ni-Fe-La(Sr)Fe(Mn)O3 as a New Active Cermet Cathode for Intermediate-Temperature CO2 Electrolysis Using a LaGaO3-Based Electrolyte</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm−2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles (<200 nm) are sustained under CO2 electrolysis conditions at high temperatures than for Ni–Fe. X‐ray diffraction analysis suggests that the main phases of Ni–Fe–LSFM are Ni and LaFeO3; thus, the oxide phase of LaFeO3 is also maintained during CO2 electrolysis. Analysis of the gaseous products indicates that only CO is formed, and the rate of CO formation agrees well with that of a four‐electron reduction process, suggesting that the reduction of CO2 to CO proceeds selectively. It is also confirmed that almost no coke is deposited on the Ni–Fe–LSFM cathode after CO2 electrolysis.
The addition of an oxide ion‐conducting phase to Ni–Fe renders a ceramic–metallic (cermet) cathode highly effective for CO2 electrolysis at lower temperatures. An increase in the number of available reaction sites and a reduction of the polarization resistance are observed for the Ni–Fe–LSFM cathode when compared to an optimized metallic cathode (Ni–Fe).</description><subject>cermet cathodes</subject><subject>coke deposition</subject><subject>electrolysis</subject><subject>Electrolytes</subject><subject>gas conversion</subject><subject>overpotential</subject><subject>reaction sites</subject><subject>Temperature</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFUE1PwkAUbIwmGuXqeRMvcljcj7Jtj0j4MnzECDHxsnm0r1iEFncXkau_3CUYnMt78zIzL5kguOWswRkTD4DluiEYD5mn8iy44oqHVMUhOz_tUlwGNWuXzCNMOJPyKvgZF7SLdAj3L6bexftRWZ9IApYAGeOOtFJXfCFpo1mjI21w71WGJK8MGZTucMwKcEinuN6gAbc1XjsRpLPC1JlqtbeFJTNblAufN4QeTCR9BIvZv8LhTXCRw8pi7W9eB7NuZ9ru0-GkN2i3hnQhhZJUzBWGkUcssmaURqlgSZ7lqhmrOELJVZOhSFSK8yhLc4izOE3mEKtEKYQMmLwO7o65G1N9btE6vay2pvQvNVehSmKfILwqOap2xQr3emOKNZi95kwfetaHnvWpZ93qjEcn5r306C2sw--TF8yHVpGMmvp13NNTxkb9p-c3LeQvO_KA5A</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wang, Shijing</creator><creator>Tsuruta, Hidekazu</creator><creator>Asanuma, Minoru</creator><creator>Ishihara, Tatsumi</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Ni-Fe-La(Sr)Fe(Mn)O3 as a New Active Cermet Cathode for Intermediate-Temperature CO2 Electrolysis Using a LaGaO3-Based Electrolyte</title><author>Wang, Shijing ; Tsuruta, Hidekazu ; Asanuma, Minoru ; Ishihara, Tatsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3263-2b6e4777782d57c7c209fdf658687e31650e296ceb7dcfa8d8c9ba86966eada03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>cermet cathodes</topic><topic>coke deposition</topic><topic>electrolysis</topic><topic>Electrolytes</topic><topic>gas conversion</topic><topic>overpotential</topic><topic>reaction sites</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shijing</creatorcontrib><creatorcontrib>Tsuruta, Hidekazu</creatorcontrib><creatorcontrib>Asanuma, Minoru</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><collection>Istex</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shijing</au><au>Tsuruta, Hidekazu</au><au>Asanuma, Minoru</au><au>Ishihara, Tatsumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ni-Fe-La(Sr)Fe(Mn)O3 as a New Active Cermet Cathode for Intermediate-Temperature CO2 Electrolysis Using a LaGaO3-Based Electrolyte</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm−2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles (<200 nm) are sustained under CO2 electrolysis conditions at high temperatures than for Ni–Fe. X‐ray diffraction analysis suggests that the main phases of Ni–Fe–LSFM are Ni and LaFeO3; thus, the oxide phase of LaFeO3 is also maintained during CO2 electrolysis. Analysis of the gaseous products indicates that only CO is formed, and the rate of CO formation agrees well with that of a four‐electron reduction process, suggesting that the reduction of CO2 to CO proceeds selectively. It is also confirmed that almost no coke is deposited on the Ni–Fe–LSFM cathode after CO2 electrolysis.
The addition of an oxide ion‐conducting phase to Ni–Fe renders a ceramic–metallic (cermet) cathode highly effective for CO2 electrolysis at lower temperatures. An increase in the number of available reaction sites and a reduction of the polarization resistance are observed for the Ni–Fe–LSFM cathode when compared to an optimized metallic cathode (Ni–Fe).</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201401003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2015-01, Vol.5 (2), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_1646986502 |
source | Access via Wiley Online Library |
subjects | cermet cathodes coke deposition electrolysis Electrolytes gas conversion overpotential reaction sites Temperature |
title | Ni-Fe-La(Sr)Fe(Mn)O3 as a New Active Cermet Cathode for Intermediate-Temperature CO2 Electrolysis Using a LaGaO3-Based Electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ni-Fe-La(Sr)Fe(Mn)O3%20as%20a%20New%20Active%20Cermet%20Cathode%20for%20Intermediate-Temperature%20CO2%20Electrolysis%20Using%20a%20LaGaO3-Based%20Electrolyte&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Shijing&rft.date=2015-01-01&rft.volume=5&rft.issue=2&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201401003&rft_dat=%3Cproquest_wiley%3E3563464751%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646986502&rft_id=info:pmid/&rfr_iscdi=true |