On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems

Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2014-12, Vol.50 (12), p.1681-1682
1. Verfasser: Salova, T. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1682
container_issue 12
container_start_page 1681
container_title Differential equations
container_volume 50
creator Salova, T. V.
description Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.
doi_str_mv 10.1134/S0012266114120131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1646969268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563364021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-57d75bec8e98fd21bc6558eae80dc3c5b3c34bea0e4d99dc6e67291d415f7aea3</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHPDFsZOMqAKKVKkDMEeOfQFXiV1sZyi_npQyIBDLnXTv4-4eIZfArgF4cfPEGOS5lAAF5Aw4HJEZSFZlnFX8mMz2cLbHT8lZjBvGWF2CmBG9djS9IY12GPukHPoxUu2dscl6p3oak2ptbz--atpR5Qw1-HvqO9pbhyrQpRpsn7yzytG4iwmHeE5OOtVHvPjuc_Jyf_e8WGar9cPj4naV6VxWKROlKUWLusK66kwOrZZCVKiwYkZzLVquedGiYliYujZaoizzGkwBoisVKj4nVwffbfDv43Rjs_FjmJ6IDchC1rKe9kwsOLB08DEG7JptsIMKuwZYs8-y-ZPlpMkPmjhx3SuGH87_ij4BKc14gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646969268</pqid></control><display><type>article</type><title>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salova, T. V.</creator><creatorcontrib>Salova, T. V.</creatorcontrib><description>Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266114120131</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Euclidean space ; Inequality ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Short Communications ; Studies</subject><ispartof>Differential equations, 2014-12, Vol.50 (12), p.1681-1682</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-57d75bec8e98fd21bc6558eae80dc3c5b3c34bea0e4d99dc6e67291d415f7aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266114120131$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266114120131$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salova, T. V.</creatorcontrib><title>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Euclidean space</subject><subject>Inequality</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Short Communications</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHPDFsZOMqAKKVKkDMEeOfQFXiV1sZyi_npQyIBDLnXTv4-4eIZfArgF4cfPEGOS5lAAF5Aw4HJEZSFZlnFX8mMz2cLbHT8lZjBvGWF2CmBG9djS9IY12GPukHPoxUu2dscl6p3oak2ptbz--atpR5Qw1-HvqO9pbhyrQpRpsn7yzytG4iwmHeE5OOtVHvPjuc_Jyf_e8WGar9cPj4naV6VxWKROlKUWLusK66kwOrZZCVKiwYkZzLVquedGiYliYujZaoizzGkwBoisVKj4nVwffbfDv43Rjs_FjmJ6IDchC1rKe9kwsOLB08DEG7JptsIMKuwZYs8-y-ZPlpMkPmjhx3SuGH87_ij4BKc14gA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Salova, T. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</title><author>Salova, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-57d75bec8e98fd21bc6558eae80dc3c5b3c34bea0e4d99dc6e67291d415f7aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Euclidean space</topic><topic>Inequality</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Short Communications</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salova, T. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salova, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>50</volume><issue>12</issue><spage>1681</spage><epage>1682</epage><pages>1681-1682</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266114120131</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2014-12, Vol.50 (12), p.1681-1682
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_1646969268
source SpringerLink Journals - AutoHoldings
subjects Difference and Functional Equations
Differential equations
Euclidean space
Inequality
Mathematical models
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Short Communications
Studies
title On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20simultaneous%20conditional%20stabilizability%20and%20destabilizability%20of%20linear%20Hamiltonian%20systems&rft.jtitle=Differential%20equations&rft.au=Salova,%20T.%20V.&rft.date=2014-12-01&rft.volume=50&rft.issue=12&rft.spage=1681&rft.epage=1682&rft.pages=1681-1682&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266114120131&rft_dat=%3Cproquest_cross%3E3563364021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646969268&rft_id=info:pmid/&rfr_iscdi=true