On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems
Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturba...
Gespeichert in:
Veröffentlicht in: | Differential equations 2014-12, Vol.50 (12), p.1681-1682 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1682 |
---|---|
container_issue | 12 |
container_start_page | 1681 |
container_title | Differential equations |
container_volume | 50 |
creator | Salova, T. V. |
description | Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations. |
doi_str_mv | 10.1134/S0012266114120131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1646969268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563364021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-57d75bec8e98fd21bc6558eae80dc3c5b3c34bea0e4d99dc6e67291d415f7aea3</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHPDFsZOMqAKKVKkDMEeOfQFXiV1sZyi_npQyIBDLnXTv4-4eIZfArgF4cfPEGOS5lAAF5Aw4HJEZSFZlnFX8mMz2cLbHT8lZjBvGWF2CmBG9djS9IY12GPukHPoxUu2dscl6p3oak2ptbz--atpR5Qw1-HvqO9pbhyrQpRpsn7yzytG4iwmHeE5OOtVHvPjuc_Jyf_e8WGar9cPj4naV6VxWKROlKUWLusK66kwOrZZCVKiwYkZzLVquedGiYliYujZaoizzGkwBoisVKj4nVwffbfDv43Rjs_FjmJ6IDchC1rKe9kwsOLB08DEG7JptsIMKuwZYs8-y-ZPlpMkPmjhx3SuGH87_ij4BKc14gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646969268</pqid></control><display><type>article</type><title>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salova, T. V.</creator><creatorcontrib>Salova, T. V.</creatorcontrib><description>Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266114120131</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Euclidean space ; Inequality ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Short Communications ; Studies</subject><ispartof>Differential equations, 2014-12, Vol.50 (12), p.1681-1682</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-57d75bec8e98fd21bc6558eae80dc3c5b3c34bea0e4d99dc6e67291d415f7aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266114120131$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266114120131$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salova, T. V.</creatorcontrib><title>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Euclidean space</subject><subject>Inequality</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Short Communications</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHPDFsZOMqAKKVKkDMEeOfQFXiV1sZyi_npQyIBDLnXTv4-4eIZfArgF4cfPEGOS5lAAF5Aw4HJEZSFZlnFX8mMz2cLbHT8lZjBvGWF2CmBG9djS9IY12GPukHPoxUu2dscl6p3oak2ptbz--atpR5Qw1-HvqO9pbhyrQpRpsn7yzytG4iwmHeE5OOtVHvPjuc_Jyf_e8WGar9cPj4naV6VxWKROlKUWLusK66kwOrZZCVKiwYkZzLVquedGiYliYujZaoizzGkwBoisVKj4nVwffbfDv43Rjs_FjmJ6IDchC1rKe9kwsOLB08DEG7JptsIMKuwZYs8-y-ZPlpMkPmjhx3SuGH87_ij4BKc14gA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Salova, T. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</title><author>Salova, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-57d75bec8e98fd21bc6558eae80dc3c5b3c34bea0e4d99dc6e67291d415f7aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Euclidean space</topic><topic>Inequality</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Short Communications</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salova, T. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salova, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>50</volume><issue>12</issue><spage>1681</spage><epage>1682</epage><pages>1681-1682</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>Every linear Hamiltonian system is simultaneously conditionally stabilizable (with respect to a subspace of half dimension) and destabilizable by infinitesimal Hamiltonian perturbations; it is also simultaneously conditionally exponentially stabilizable and destabilizable by uniformly small perturbations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266114120131</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2014-12, Vol.50 (12), p.1681-1682 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_1646969268 |
source | SpringerLink Journals - AutoHoldings |
subjects | Difference and Functional Equations Differential equations Euclidean space Inequality Mathematical models Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Short Communications Studies |
title | On the simultaneous conditional stabilizability and destabilizability of linear Hamiltonian systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20simultaneous%20conditional%20stabilizability%20and%20destabilizability%20of%20linear%20Hamiltonian%20systems&rft.jtitle=Differential%20equations&rft.au=Salova,%20T.%20V.&rft.date=2014-12-01&rft.volume=50&rft.issue=12&rft.spage=1681&rft.epage=1682&rft.pages=1681-1682&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266114120131&rft_dat=%3Cproquest_cross%3E3563364021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646969268&rft_id=info:pmid/&rfr_iscdi=true |