Cardiovascular and Systemic MicrovascularEffects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer
Objectives This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. Background...
Gespeichert in:
Veröffentlicht in: | Journal of the American College of Cardiology 2012-08, Vol.60 (7), p.618-625 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 7 |
container_start_page | 618 |
container_title | Journal of the American College of Cardiology |
container_volume | 60 |
creator | Belcik, J. Todd, BS, RDCS Qi, Yue, MD Kaufmann, Beat A., MD Xie, Aris, BS Bullens, Sherry, BA Morgan, Terry K., MD, PhD Bagby, Susan P., MD Kolumam, Ganesh, PhD Kowalski, Joe, BS Oyer, Jon A., PhD Bunting, Stuart, PhD Lindner, Jonathan R., MD |
description | Objectives This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. Background Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. Methods Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. Results Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF–treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension–pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF–treated mice. Conclusions Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition. |
doi_str_mv | 10.1016/j.jacc.2012.02.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1645151319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109712014088</els_id><sourcerecordid>3556808781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2723-5875ca34e0a50e07851b28e49e4b21725a2855ab8440e1a7d541326afe6cf8ef3</originalsourceid><addsrcrecordid>eNp9kd9r2zAQx8XYYFm3f2BPgj0700mWLUMplJB2g449tNuruMgnIte1U8lJyX9fmWwd9GFwcAd3n_vxPcY-g1iCgOprt-zQuaUUIJcim1Zv2AK0NoXSTf2WLUStdAGiqd-zDyl1QojKQLNgwwpjG8YDJrfvMXIcWn57TBM9BMd_BBdfUmvvyU2Jj55fDlMofv9F1kM7TlvqA_b8Oo5P05ZfoZvGyO-2FHF35D7HKxwcxY_sncc-0ac__oz9ulrfrb4VNz-vv68ubwona6kKbWrtUJUkUAsStdGwkYbKhsqNhFpqlEZr3JiyFARYt7oEJSv0VDlvyKsz9uXUdxfHxz2lyXbjPg55pIWq1KBBQZOr5Kkqn5lSJG93MTxgPFoQdtbVdnbW1c66WpFNqwydnyDK-x8CRZtcoHxcG2IWyLZj-D9-8Qp3fRiCw_6ejpT-rWlTBuzt_Lj5b5CblMIY9QwVYZYt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645151319</pqid></control><display><type>article</type><title>Cardiovascular and Systemic MicrovascularEffects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Belcik, J. Todd, BS, RDCS ; Qi, Yue, MD ; Kaufmann, Beat A., MD ; Xie, Aris, BS ; Bullens, Sherry, BA ; Morgan, Terry K., MD, PhD ; Bagby, Susan P., MD ; Kolumam, Ganesh, PhD ; Kowalski, Joe, BS ; Oyer, Jon A., PhD ; Bunting, Stuart, PhD ; Lindner, Jonathan R., MD</creator><creatorcontrib>Belcik, J. Todd, BS, RDCS ; Qi, Yue, MD ; Kaufmann, Beat A., MD ; Xie, Aris, BS ; Bullens, Sherry, BA ; Morgan, Terry K., MD, PhD ; Bagby, Susan P., MD ; Kolumam, Ganesh, PhD ; Kowalski, Joe, BS ; Oyer, Jon A., PhD ; Bunting, Stuart, PhD ; Lindner, Jonathan R., MD</creatorcontrib><description>Objectives This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. Background Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. Methods Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. Results Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF–treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension–pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF–treated mice. Conclusions Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2012.02.053</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Blood pressure ; Cardiology ; Cardiovascular ; Catheters ; contrast echocardiography ; Coronary vessels ; Enzymes ; Histology ; Hypertension ; Internal Medicine ; Mechanical properties ; Musculoskeletal system ; Nitric oxide ; Peptides ; Phosphorylation ; Rodents ; Studies ; Vascular endothelial growth factor ; VEGF ; ventricular hypertrophy</subject><ispartof>Journal of the American College of Cardiology, 2012-08, Vol.60 (7), p.618-625</ispartof><rights>American College of Cardiology Foundation</rights><rights>2012 American College of Cardiology Foundation</rights><rights>Copyright Elsevier Limited Aug 14, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2723-5875ca34e0a50e07851b28e49e4b21725a2855ab8440e1a7d541326afe6cf8ef3</citedby><cites>FETCH-LOGICAL-c2723-5875ca34e0a50e07851b28e49e4b21725a2855ab8440e1a7d541326afe6cf8ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jacc.2012.02.053$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Belcik, J. Todd, BS, RDCS</creatorcontrib><creatorcontrib>Qi, Yue, MD</creatorcontrib><creatorcontrib>Kaufmann, Beat A., MD</creatorcontrib><creatorcontrib>Xie, Aris, BS</creatorcontrib><creatorcontrib>Bullens, Sherry, BA</creatorcontrib><creatorcontrib>Morgan, Terry K., MD, PhD</creatorcontrib><creatorcontrib>Bagby, Susan P., MD</creatorcontrib><creatorcontrib>Kolumam, Ganesh, PhD</creatorcontrib><creatorcontrib>Kowalski, Joe, BS</creatorcontrib><creatorcontrib>Oyer, Jon A., PhD</creatorcontrib><creatorcontrib>Bunting, Stuart, PhD</creatorcontrib><creatorcontrib>Lindner, Jonathan R., MD</creatorcontrib><title>Cardiovascular and Systemic MicrovascularEffects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer</title><title>Journal of the American College of Cardiology</title><description>Objectives This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. Background Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. Methods Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. Results Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF–treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension–pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF–treated mice. Conclusions Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition.</description><subject>Blood pressure</subject><subject>Cardiology</subject><subject>Cardiovascular</subject><subject>Catheters</subject><subject>contrast echocardiography</subject><subject>Coronary vessels</subject><subject>Enzymes</subject><subject>Histology</subject><subject>Hypertension</subject><subject>Internal Medicine</subject><subject>Mechanical properties</subject><subject>Musculoskeletal system</subject><subject>Nitric oxide</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Rodents</subject><subject>Studies</subject><subject>Vascular endothelial growth factor</subject><subject>VEGF</subject><subject>ventricular hypertrophy</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kd9r2zAQx8XYYFm3f2BPgj0700mWLUMplJB2g449tNuruMgnIte1U8lJyX9fmWwd9GFwcAd3n_vxPcY-g1iCgOprt-zQuaUUIJcim1Zv2AK0NoXSTf2WLUStdAGiqd-zDyl1QojKQLNgwwpjG8YDJrfvMXIcWn57TBM9BMd_BBdfUmvvyU2Jj55fDlMofv9F1kM7TlvqA_b8Oo5P05ZfoZvGyO-2FHF35D7HKxwcxY_sncc-0ac__oz9ulrfrb4VNz-vv68ubwona6kKbWrtUJUkUAsStdGwkYbKhsqNhFpqlEZr3JiyFARYt7oEJSv0VDlvyKsz9uXUdxfHxz2lyXbjPg55pIWq1KBBQZOr5Kkqn5lSJG93MTxgPFoQdtbVdnbW1c66WpFNqwydnyDK-x8CRZtcoHxcG2IWyLZj-D9-8Qp3fRiCw_6ejpT-rWlTBuzt_Lj5b5CblMIY9QwVYZYt</recordid><startdate>20120814</startdate><enddate>20120814</enddate><creator>Belcik, J. Todd, BS, RDCS</creator><creator>Qi, Yue, MD</creator><creator>Kaufmann, Beat A., MD</creator><creator>Xie, Aris, BS</creator><creator>Bullens, Sherry, BA</creator><creator>Morgan, Terry K., MD, PhD</creator><creator>Bagby, Susan P., MD</creator><creator>Kolumam, Ganesh, PhD</creator><creator>Kowalski, Joe, BS</creator><creator>Oyer, Jon A., PhD</creator><creator>Bunting, Stuart, PhD</creator><creator>Lindner, Jonathan R., MD</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20120814</creationdate><title>Cardiovascular and Systemic MicrovascularEffects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer</title><author>Belcik, J. Todd, BS, RDCS ; Qi, Yue, MD ; Kaufmann, Beat A., MD ; Xie, Aris, BS ; Bullens, Sherry, BA ; Morgan, Terry K., MD, PhD ; Bagby, Susan P., MD ; Kolumam, Ganesh, PhD ; Kowalski, Joe, BS ; Oyer, Jon A., PhD ; Bunting, Stuart, PhD ; Lindner, Jonathan R., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2723-5875ca34e0a50e07851b28e49e4b21725a2855ab8440e1a7d541326afe6cf8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blood pressure</topic><topic>Cardiology</topic><topic>Cardiovascular</topic><topic>Catheters</topic><topic>contrast echocardiography</topic><topic>Coronary vessels</topic><topic>Enzymes</topic><topic>Histology</topic><topic>Hypertension</topic><topic>Internal Medicine</topic><topic>Mechanical properties</topic><topic>Musculoskeletal system</topic><topic>Nitric oxide</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Rodents</topic><topic>Studies</topic><topic>Vascular endothelial growth factor</topic><topic>VEGF</topic><topic>ventricular hypertrophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belcik, J. Todd, BS, RDCS</creatorcontrib><creatorcontrib>Qi, Yue, MD</creatorcontrib><creatorcontrib>Kaufmann, Beat A., MD</creatorcontrib><creatorcontrib>Xie, Aris, BS</creatorcontrib><creatorcontrib>Bullens, Sherry, BA</creatorcontrib><creatorcontrib>Morgan, Terry K., MD, PhD</creatorcontrib><creatorcontrib>Bagby, Susan P., MD</creatorcontrib><creatorcontrib>Kolumam, Ganesh, PhD</creatorcontrib><creatorcontrib>Kowalski, Joe, BS</creatorcontrib><creatorcontrib>Oyer, Jon A., PhD</creatorcontrib><creatorcontrib>Bunting, Stuart, PhD</creatorcontrib><creatorcontrib>Lindner, Jonathan R., MD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belcik, J. Todd, BS, RDCS</au><au>Qi, Yue, MD</au><au>Kaufmann, Beat A., MD</au><au>Xie, Aris, BS</au><au>Bullens, Sherry, BA</au><au>Morgan, Terry K., MD, PhD</au><au>Bagby, Susan P., MD</au><au>Kolumam, Ganesh, PhD</au><au>Kowalski, Joe, BS</au><au>Oyer, Jon A., PhD</au><au>Bunting, Stuart, PhD</au><au>Lindner, Jonathan R., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiovascular and Systemic MicrovascularEffects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer</atitle><jtitle>Journal of the American College of Cardiology</jtitle><date>2012-08-14</date><risdate>2012</risdate><volume>60</volume><issue>7</issue><spage>618</spage><epage>625</epage><pages>618-625</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Objectives This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. Background Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. Methods Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. Results Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF–treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension–pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF–treated mice. Conclusions Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jacc.2012.02.053</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1097 |
ispartof | Journal of the American College of Cardiology, 2012-08, Vol.60 (7), p.618-625 |
issn | 0735-1097 1558-3597 |
language | eng |
recordid | cdi_proquest_journals_1645151319 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Blood pressure Cardiology Cardiovascular Catheters contrast echocardiography Coronary vessels Enzymes Histology Hypertension Internal Medicine Mechanical properties Musculoskeletal system Nitric oxide Peptides Phosphorylation Rodents Studies Vascular endothelial growth factor VEGF ventricular hypertrophy |
title | Cardiovascular and Systemic MicrovascularEffects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiovascular%20and%20Systemic%20MicrovascularEffects%20of%20Anti-Vascular%20Endothelial%20Growth%20Factor%20Therapy%20for%20Cancer&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Belcik,%20J.%20Todd,%20BS,%20RDCS&rft.date=2012-08-14&rft.volume=60&rft.issue=7&rft.spage=618&rft.epage=625&rft.pages=618-625&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2012.02.053&rft_dat=%3Cproquest_cross%3E3556808781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645151319&rft_id=info:pmid/&rft_els_id=S0735109712014088&rfr_iscdi=true |