Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting

Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2014-12, Vol.25 (12), p.2144-2156
Hauptverfasser: Stefan, Nikolas, Zimmermann, Martina, Simon, Manuel, Zangemeister-Wittke, Uwe, Plückthun, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2156
container_issue 12
container_start_page 2144
container_title Bioconjugate chemistry
container_volume 25
creator Stefan, Nikolas
Zimmermann, Martina
Simon, Manuel
Zangemeister-Wittke, Uwe
Plückthun, Andreas
description Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.
doi_str_mv 10.1021/bc500468s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1644172298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3553115301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-39ed52d2cc6fda17bdb3da0e48e28f4f980139e6ba37f367b89cfc182cf42c563</originalsourceid><addsrcrecordid>eNplkE1PwzAMhiMEYjA48AdQJcSBQyFfbdMjTNtAmgCJca7SNOkytmYk6WD_nlQbExIX25Ifv7ZfAC4QvEUQo7tSJBDSlLkDcIISDGPKED4MNaQkRgziHjh1bg4hzBHDx6CHE5LANM9PQPVs1nIRvVpT2baOJ_pDRqPWadNEU_Otm-hL-1nX9pI7Gb_Jxmmv1zJ60MZYPzO1aXiYH443C-67MWVsNG2XXeS2ll439Rk4Unzh5Pku98H7aDgdPMaTl_HT4H4Sc0KJj0kuqwRXWIhUVRxlZVWSikNJmcRMUZUziAKTlpxkiqRZyXKhRPhIKIpFkpI-uNrqrqz5bKXzxdy0NtznCpRSijKMcxaomy0lrHHOSlWsrF5yuykQLDo_i72fgb3cKbblUlZ78tfAAFxvAS7cn23_hH4A-C59Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644172298</pqid></control><display><type>article</type><title>Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Stefan, Nikolas ; Zimmermann, Martina ; Simon, Manuel ; Zangemeister-Wittke, Uwe ; Plückthun, Andreas</creator><creatorcontrib>Stefan, Nikolas ; Zimmermann, Martina ; Simon, Manuel ; Zangemeister-Wittke, Uwe ; Plückthun, Andreas</creatorcontrib><description>Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/bc500468s</identifier><identifier>PMID: 25350699</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>3C Viral Proteases ; ADP Ribose Transferases - chemistry ; Animals ; Ankyrin Repeat ; Antigens, Neoplasm - chemistry ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; Area Under Curve ; Bacterial Toxins - chemistry ; Binding Sites ; Cell Adhesion Molecules - chemistry ; Cell Line, Tumor ; Click Chemistry ; Cysteine Endopeptidases - chemistry ; Cysteine Endopeptidases - metabolism ; Drug Design ; Epithelial Cell Adhesion Molecule ; Exotoxins - chemistry ; Female ; Half-Life ; Humans ; Mice, Inbred C57BL ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Prodrugs - chemistry ; Prodrugs - pharmacology ; Proteins ; Pseudomonas aeruginosa Exotoxin A ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - pharmacology ; Rodents ; Tissues ; Toxicity ; Toxins ; Tumors ; Viral Proteins - chemistry ; Viral Proteins - metabolism ; Virulence Factors - chemistry</subject><ispartof>Bioconjugate chemistry, 2014-12, Vol.25 (12), p.2144-2156</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 17, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-39ed52d2cc6fda17bdb3da0e48e28f4f980139e6ba37f367b89cfc182cf42c563</citedby><cites>FETCH-LOGICAL-a343t-39ed52d2cc6fda17bdb3da0e48e28f4f980139e6ba37f367b89cfc182cf42c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bc500468s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bc500468s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25350699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefan, Nikolas</creatorcontrib><creatorcontrib>Zimmermann, Martina</creatorcontrib><creatorcontrib>Simon, Manuel</creatorcontrib><creatorcontrib>Zangemeister-Wittke, Uwe</creatorcontrib><creatorcontrib>Plückthun, Andreas</creatorcontrib><title>Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.</description><subject>3C Viral Proteases</subject><subject>ADP Ribose Transferases - chemistry</subject><subject>Animals</subject><subject>Ankyrin Repeat</subject><subject>Antigens, Neoplasm - chemistry</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Area Under Curve</subject><subject>Bacterial Toxins - chemistry</subject><subject>Binding Sites</subject><subject>Cell Adhesion Molecules - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Click Chemistry</subject><subject>Cysteine Endopeptidases - chemistry</subject><subject>Cysteine Endopeptidases - metabolism</subject><subject>Drug Design</subject><subject>Epithelial Cell Adhesion Molecule</subject><subject>Exotoxins - chemistry</subject><subject>Female</subject><subject>Half-Life</subject><subject>Humans</subject><subject>Mice, Inbred C57BL</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Prodrugs - chemistry</subject><subject>Prodrugs - pharmacology</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa Exotoxin A</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Rodents</subject><subject>Tissues</subject><subject>Toxicity</subject><subject>Toxins</subject><subject>Tumors</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><subject>Virulence Factors - chemistry</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE1PwzAMhiMEYjA48AdQJcSBQyFfbdMjTNtAmgCJca7SNOkytmYk6WD_nlQbExIX25Ifv7ZfAC4QvEUQo7tSJBDSlLkDcIISDGPKED4MNaQkRgziHjh1bg4hzBHDx6CHE5LANM9PQPVs1nIRvVpT2baOJ_pDRqPWadNEU_Otm-hL-1nX9pI7Gb_Jxmmv1zJ60MZYPzO1aXiYH443C-67MWVsNG2XXeS2ll439Rk4Unzh5Pku98H7aDgdPMaTl_HT4H4Sc0KJj0kuqwRXWIhUVRxlZVWSikNJmcRMUZUziAKTlpxkiqRZyXKhRPhIKIpFkpI-uNrqrqz5bKXzxdy0NtznCpRSijKMcxaomy0lrHHOSlWsrF5yuykQLDo_i72fgb3cKbblUlZ78tfAAFxvAS7cn23_hH4A-C59Mg</recordid><startdate>20141217</startdate><enddate>20141217</enddate><creator>Stefan, Nikolas</creator><creator>Zimmermann, Martina</creator><creator>Simon, Manuel</creator><creator>Zangemeister-Wittke, Uwe</creator><creator>Plückthun, Andreas</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141217</creationdate><title>Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting</title><author>Stefan, Nikolas ; Zimmermann, Martina ; Simon, Manuel ; Zangemeister-Wittke, Uwe ; Plückthun, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-39ed52d2cc6fda17bdb3da0e48e28f4f980139e6ba37f367b89cfc182cf42c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3C Viral Proteases</topic><topic>ADP Ribose Transferases - chemistry</topic><topic>Animals</topic><topic>Ankyrin Repeat</topic><topic>Antigens, Neoplasm - chemistry</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Area Under Curve</topic><topic>Bacterial Toxins - chemistry</topic><topic>Binding Sites</topic><topic>Cell Adhesion Molecules - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Click Chemistry</topic><topic>Cysteine Endopeptidases - chemistry</topic><topic>Cysteine Endopeptidases - metabolism</topic><topic>Drug Design</topic><topic>Epithelial Cell Adhesion Molecule</topic><topic>Exotoxins - chemistry</topic><topic>Female</topic><topic>Half-Life</topic><topic>Humans</topic><topic>Mice, Inbred C57BL</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Prodrugs - chemistry</topic><topic>Prodrugs - pharmacology</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa Exotoxin A</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Rodents</topic><topic>Tissues</topic><topic>Toxicity</topic><topic>Toxins</topic><topic>Tumors</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><topic>Virulence Factors - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefan, Nikolas</creatorcontrib><creatorcontrib>Zimmermann, Martina</creatorcontrib><creatorcontrib>Simon, Manuel</creatorcontrib><creatorcontrib>Zangemeister-Wittke, Uwe</creatorcontrib><creatorcontrib>Plückthun, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefan, Nikolas</au><au>Zimmermann, Martina</au><au>Simon, Manuel</au><au>Zangemeister-Wittke, Uwe</au><au>Plückthun, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2014-12-17</date><risdate>2014</risdate><volume>25</volume><issue>12</issue><spage>2144</spage><epage>2156</epage><pages>2144-2156</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25350699</pmid><doi>10.1021/bc500468s</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2014-12, Vol.25 (12), p.2144-2156
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_journals_1644172298
source MEDLINE; American Chemical Society Publications
subjects 3C Viral Proteases
ADP Ribose Transferases - chemistry
Animals
Ankyrin Repeat
Antigens, Neoplasm - chemistry
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
Area Under Curve
Bacterial Toxins - chemistry
Binding Sites
Cell Adhesion Molecules - chemistry
Cell Line, Tumor
Click Chemistry
Cysteine Endopeptidases - chemistry
Cysteine Endopeptidases - metabolism
Drug Design
Epithelial Cell Adhesion Molecule
Exotoxins - chemistry
Female
Half-Life
Humans
Mice, Inbred C57BL
Polyethylene glycol
Polyethylene Glycols - chemistry
Prodrugs - chemistry
Prodrugs - pharmacology
Proteins
Pseudomonas aeruginosa Exotoxin A
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - pharmacology
Rodents
Tissues
Toxicity
Toxins
Tumors
Viral Proteins - chemistry
Viral Proteins - metabolism
Virulence Factors - chemistry
title Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Prodrug-Like%20Fusion%20Toxin%20with%20Protease-Sensitive%20Bioorthogonal%20PEGylation%20for%20Tumor%20Targeting&rft.jtitle=Bioconjugate%20chemistry&rft.au=Stefan,%20Nikolas&rft.date=2014-12-17&rft.volume=25&rft.issue=12&rft.spage=2144&rft.epage=2156&rft.pages=2144-2156&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/bc500468s&rft_dat=%3Cproquest_cross%3E3553115301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644172298&rft_id=info:pmid/25350699&rfr_iscdi=true