Online High-Precision Probabilistic Localization of Robotic Fish Using Visual and Inertial Cues

This paper focuses on the development of an online high-precision probabilistic localization approach for the miniature underwater robots equipped with limited computational capacities and low-cost sensing devices. The localization system takes Monte Carlo localization (MCL) as the main framework an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2015-02, Vol.62 (2), p.1113-1124
Hauptverfasser: Wang, Wei, Xie, Guangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1124
container_issue 2
container_start_page 1113
container_title IEEE transactions on industrial electronics (1982)
container_volume 62
creator Wang, Wei
Xie, Guangming
description This paper focuses on the development of an online high-precision probabilistic localization approach for the miniature underwater robots equipped with limited computational capacities and low-cost sensing devices. The localization system takes Monte Carlo localization (MCL) as the main framework and utilizes the onboard camera and low-cost inertial measurement unit (IMU) for information acquisition to provide a decimeter-level precision with 5-Hz refreshing rate in a small space with several artificial landmarks. Specifically, a novel underwater image processing algorithm is introduced to improve the underwater image quality; two key parameters, including a distance factor and an angle factor, are finally calculated to serve as the criteria to MCL. Meanwhile, the accurate orientation and rough odometry of the robot are acquired by onboard IMU. Moreover, a Kalman filter is adopted to filter the key information extracted from the sensors' data processing. In principle, when visual and inertial cues are both obtained, visual information with higher reliability has the priority to be used in the algorithm, which finally results in rapid convergence to the real pose of the robot. A series of relevant experiments are systematically conducted on the robotic fish, which prove that the online localization algorithm herein is highly accurate, robust, and practical for the miniature underwater robots with limited computational resources.
doi_str_mv 10.1109/TIE.2014.2341593
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1644051048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6862044</ieee_id><sourcerecordid>3552821511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6c4f9487ef9d60ab894ddec348f3317e7de751f4f5264c40cec8dcbfac76fb83</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKt3wcuCFy9b873Zo5TWFgotUr2GbDZpU7abmmwP-uvN0uLBi6dhZp6Zd4YXgHsERwjB8nk9n4wwRHSECUWsJBdggBgr8rKk4hIMIC5EDiHl1-Amxh1MJENsAOSybVxrspnbbPNVMNpF59tsFXylKte42DmdLbxWjftWXd_yNnvzle_rUxe32Xt07Sb7cPGomky1dTZvTehcSsZHE2_BlVVNNHfnOATr6WQ9nuWL5et8_LLINcWky7mmNh1aGFvWHKpKlLSujSZUWEJQYYraFAxZahnmVFOojRa1rqzSBbeVIEPwdFp7CP4zyXZy76I2TaNa449RooJggQXi_H-U81IwhBFL6OMfdOePoU1_JIpSyBCkvTY8UTr4GIOx8hDcXoUviaDsvZHJG9l7I8_epJGH04gzxvziXHAMKSU_ZkaKPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644051048</pqid></control><display><type>article</type><title>Online High-Precision Probabilistic Localization of Robotic Fish Using Visual and Inertial Cues</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Wei ; Xie, Guangming</creator><creatorcontrib>Wang, Wei ; Xie, Guangming</creatorcontrib><description>This paper focuses on the development of an online high-precision probabilistic localization approach for the miniature underwater robots equipped with limited computational capacities and low-cost sensing devices. The localization system takes Monte Carlo localization (MCL) as the main framework and utilizes the onboard camera and low-cost inertial measurement unit (IMU) for information acquisition to provide a decimeter-level precision with 5-Hz refreshing rate in a small space with several artificial landmarks. Specifically, a novel underwater image processing algorithm is introduced to improve the underwater image quality; two key parameters, including a distance factor and an angle factor, are finally calculated to serve as the criteria to MCL. Meanwhile, the accurate orientation and rough odometry of the robot are acquired by onboard IMU. Moreover, a Kalman filter is adopted to filter the key information extracted from the sensors' data processing. In principle, when visual and inertial cues are both obtained, visual information with higher reliability has the priority to be used in the algorithm, which finally results in rapid convergence to the real pose of the robot. A series of relevant experiments are systematically conducted on the robotic fish, which prove that the online localization algorithm herein is highly accurate, robust, and practical for the miniature underwater robots with limited computational resources.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2341593</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Image processing ; Inertial ; Kalman filters ; Localization ; Onboard ; Online ; Position (location) ; Robot vision systems ; Robots ; Underwater robots ; Visual</subject><ispartof>IEEE transactions on industrial electronics (1982), 2015-02, Vol.62 (2), p.1113-1124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6c4f9487ef9d60ab894ddec348f3317e7de751f4f5264c40cec8dcbfac76fb83</citedby><cites>FETCH-LOGICAL-c423t-6c4f9487ef9d60ab894ddec348f3317e7de751f4f5264c40cec8dcbfac76fb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6862044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6862044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><title>Online High-Precision Probabilistic Localization of Robotic Fish Using Visual and Inertial Cues</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper focuses on the development of an online high-precision probabilistic localization approach for the miniature underwater robots equipped with limited computational capacities and low-cost sensing devices. The localization system takes Monte Carlo localization (MCL) as the main framework and utilizes the onboard camera and low-cost inertial measurement unit (IMU) for information acquisition to provide a decimeter-level precision with 5-Hz refreshing rate in a small space with several artificial landmarks. Specifically, a novel underwater image processing algorithm is introduced to improve the underwater image quality; two key parameters, including a distance factor and an angle factor, are finally calculated to serve as the criteria to MCL. Meanwhile, the accurate orientation and rough odometry of the robot are acquired by onboard IMU. Moreover, a Kalman filter is adopted to filter the key information extracted from the sensors' data processing. In principle, when visual and inertial cues are both obtained, visual information with higher reliability has the priority to be used in the algorithm, which finally results in rapid convergence to the real pose of the robot. A series of relevant experiments are systematically conducted on the robotic fish, which prove that the online localization algorithm herein is highly accurate, robust, and practical for the miniature underwater robots with limited computational resources.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Image processing</subject><subject>Inertial</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Onboard</subject><subject>Online</subject><subject>Position (location)</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>Underwater robots</subject><subject>Visual</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LAzEQhoMoWKt3wcuCFy9b873Zo5TWFgotUr2GbDZpU7abmmwP-uvN0uLBi6dhZp6Zd4YXgHsERwjB8nk9n4wwRHSECUWsJBdggBgr8rKk4hIMIC5EDiHl1-Amxh1MJENsAOSybVxrspnbbPNVMNpF59tsFXylKte42DmdLbxWjftWXd_yNnvzle_rUxe32Xt07Sb7cPGomky1dTZvTehcSsZHE2_BlVVNNHfnOATr6WQ9nuWL5et8_LLINcWky7mmNh1aGFvWHKpKlLSujSZUWEJQYYraFAxZahnmVFOojRa1rqzSBbeVIEPwdFp7CP4zyXZy76I2TaNa449RooJggQXi_H-U81IwhBFL6OMfdOePoU1_JIpSyBCkvTY8UTr4GIOx8hDcXoUviaDsvZHJG9l7I8_epJGH04gzxvziXHAMKSU_ZkaKPw</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Wang, Wei</creator><creator>Xie, Guangming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201502</creationdate><title>Online High-Precision Probabilistic Localization of Robotic Fish Using Visual and Inertial Cues</title><author>Wang, Wei ; Xie, Guangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6c4f9487ef9d60ab894ddec348f3317e7de751f4f5264c40cec8dcbfac76fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Image processing</topic><topic>Inertial</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Onboard</topic><topic>Online</topic><topic>Position (location)</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>Underwater robots</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Wei</au><au>Xie, Guangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online High-Precision Probabilistic Localization of Robotic Fish Using Visual and Inertial Cues</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2015-02</date><risdate>2015</risdate><volume>62</volume><issue>2</issue><spage>1113</spage><epage>1124</epage><pages>1113-1124</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper focuses on the development of an online high-precision probabilistic localization approach for the miniature underwater robots equipped with limited computational capacities and low-cost sensing devices. The localization system takes Monte Carlo localization (MCL) as the main framework and utilizes the onboard camera and low-cost inertial measurement unit (IMU) for information acquisition to provide a decimeter-level precision with 5-Hz refreshing rate in a small space with several artificial landmarks. Specifically, a novel underwater image processing algorithm is introduced to improve the underwater image quality; two key parameters, including a distance factor and an angle factor, are finally calculated to serve as the criteria to MCL. Meanwhile, the accurate orientation and rough odometry of the robot are acquired by onboard IMU. Moreover, a Kalman filter is adopted to filter the key information extracted from the sensors' data processing. In principle, when visual and inertial cues are both obtained, visual information with higher reliability has the priority to be used in the algorithm, which finally results in rapid convergence to the real pose of the robot. A series of relevant experiments are systematically conducted on the robotic fish, which prove that the online localization algorithm herein is highly accurate, robust, and practical for the miniature underwater robots with limited computational resources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2341593</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2015-02, Vol.62 (2), p.1113-1124
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_1644051048
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Image processing
Inertial
Kalman filters
Localization
Onboard
Online
Position (location)
Robot vision systems
Robots
Underwater robots
Visual
title Online High-Precision Probabilistic Localization of Robotic Fish Using Visual and Inertial Cues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20High-Precision%20Probabilistic%20Localization%20of%20Robotic%20Fish%20Using%20Visual%20and%20Inertial%20Cues&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wang,%20Wei&rft.date=2015-02&rft.volume=62&rft.issue=2&rft.spage=1113&rft.epage=1124&rft.pages=1113-1124&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2341593&rft_dat=%3Cproquest_RIE%3E3552821511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644051048&rft_id=info:pmid/&rft_ieee_id=6862044&rfr_iscdi=true