Innovative Discrete-Vortex Model for Dynamic Stall Simulations

An innovative model based on the vortex theory is presented with the aim of simulating the two-dimensional airfoil dynamic behavior at pitching reduced frequencies related to vertical axis wind-turbine operative conditions. The model relies on the introduction of a second separated wake from the suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2015-02, Vol.53 (2), p.479-485
Hauptverfasser: Antonini, Enrico G. A, Bedon, Gabriele, De Betta, Stefano, Michelini, Luca, Raciti Castelli, Marco, Benini, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 2
container_start_page 479
container_title AIAA journal
container_volume 53
creator Antonini, Enrico G. A
Bedon, Gabriele
De Betta, Stefano
Michelini, Luca
Raciti Castelli, Marco
Benini, Ernesto
description An innovative model based on the vortex theory is presented with the aim of simulating the two-dimensional airfoil dynamic behavior at pitching reduced frequencies related to vertical axis wind-turbine operative conditions. The model relies on the introduction of a second separated wake from the suction side to correctly account for the aerodynamic effects of stall conditions and is provided with correction models whose aim is to consider the dynamic evolution of the shed vortices and of the separation point. The model receives as input experimental data to estimate the nonoscillating steady-state separation point for different angles of attack. A validation procedure confirmed the model capabilities to provide reliable numerical estimations of the lift coefficient for a pitching airfoil compared to experimental tests and computational-fluid-dynamics approaches based on the unsteady Reynolds-averaged Navier–Stokes equations complemented with the k-ω shear-stress transport turbulence model. In particular, the dynamic stall phenomenon is correctly simulated, providing lift coefficients in a hysteresis cycle. In addition, the computational effort is strongly reduced compared to the other computational tools and therefore enables the model to be used in routines with several simulation calls (e.g., optimization).
doi_str_mv 10.2514/1.J053430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1642697579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660073654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-e393e9c4aa3a58d069a5e5f22861ab9f959e7a193399652daf101d841498a97b3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVg_8gIIgeUnf2K9mLIK0flYqHqnhbpskGUpJs3U2K_fdG2oMoeBoGnnkZXkJOgY6YBHEFo0cqueB0jwxAch7zVL7vkwGlFGIQkh2SoxCW_caSFAbketo0bo1tubbRpAyZt62N35xv7Wf05HJbRYXz0WTTYF1m0bzFqormZd1V_YlrwjE5KLAK9mQ3h-T17vZl_BDPnu-n45tZjFzoNrZcc6szgchRpjlVGqWVBWOpAlzoQkttEwTNudZKshwLoJCnAoROUScLPiQX29yVdx-dDa2p-2dtVWFjXRcMKEVpwpUUPT37RZeu803_nWFCA2egJfynQAmmdCIT3avLrcq8C8Hbwqx8WaPfGKDmu28DZtd3b8-3FkvEH2l_4BexDnrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642697579</pqid></control><display><type>article</type><title>Innovative Discrete-Vortex Model for Dynamic Stall Simulations</title><source>Alma/SFX Local Collection</source><creator>Antonini, Enrico G. A ; Bedon, Gabriele ; De Betta, Stefano ; Michelini, Luca ; Raciti Castelli, Marco ; Benini, Ernesto</creator><creatorcontrib>Antonini, Enrico G. A ; Bedon, Gabriele ; De Betta, Stefano ; Michelini, Luca ; Raciti Castelli, Marco ; Benini, Ernesto</creatorcontrib><description>An innovative model based on the vortex theory is presented with the aim of simulating the two-dimensional airfoil dynamic behavior at pitching reduced frequencies related to vertical axis wind-turbine operative conditions. The model relies on the introduction of a second separated wake from the suction side to correctly account for the aerodynamic effects of stall conditions and is provided with correction models whose aim is to consider the dynamic evolution of the shed vortices and of the separation point. The model receives as input experimental data to estimate the nonoscillating steady-state separation point for different angles of attack. A validation procedure confirmed the model capabilities to provide reliable numerical estimations of the lift coefficient for a pitching airfoil compared to experimental tests and computational-fluid-dynamics approaches based on the unsteady Reynolds-averaged Navier–Stokes equations complemented with the k-ω shear-stress transport turbulence model. In particular, the dynamic stall phenomenon is correctly simulated, providing lift coefficients in a hysteresis cycle. In addition, the computational effort is strongly reduced compared to the other computational tools and therefore enables the model to be used in routines with several simulation calls (e.g., optimization).</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J053430</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic coefficients ; Aerodynamics ; Aircraft ; Airfoils ; Angle of attack ; Computation ; Computational fluid dynamics ; Computer simulation ; Dynamics ; Fluid flow ; Mathematical models ; Navier-Stokes equations ; Optimization ; Separation ; Simulation ; Software ; Stall ; Stalling ; Suction ; Turbulence models ; Wind turbines</subject><ispartof>AIAA journal, 2015-02, Vol.53 (2), p.479-485</ispartof><rights>Copyright © 2014 by University of Padua. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2014 by University of Padua. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-e393e9c4aa3a58d069a5e5f22861ab9f959e7a193399652daf101d841498a97b3</citedby><cites>FETCH-LOGICAL-a349t-e393e9c4aa3a58d069a5e5f22861ab9f959e7a193399652daf101d841498a97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Antonini, Enrico G. A</creatorcontrib><creatorcontrib>Bedon, Gabriele</creatorcontrib><creatorcontrib>De Betta, Stefano</creatorcontrib><creatorcontrib>Michelini, Luca</creatorcontrib><creatorcontrib>Raciti Castelli, Marco</creatorcontrib><creatorcontrib>Benini, Ernesto</creatorcontrib><title>Innovative Discrete-Vortex Model for Dynamic Stall Simulations</title><title>AIAA journal</title><description>An innovative model based on the vortex theory is presented with the aim of simulating the two-dimensional airfoil dynamic behavior at pitching reduced frequencies related to vertical axis wind-turbine operative conditions. The model relies on the introduction of a second separated wake from the suction side to correctly account for the aerodynamic effects of stall conditions and is provided with correction models whose aim is to consider the dynamic evolution of the shed vortices and of the separation point. The model receives as input experimental data to estimate the nonoscillating steady-state separation point for different angles of attack. A validation procedure confirmed the model capabilities to provide reliable numerical estimations of the lift coefficient for a pitching airfoil compared to experimental tests and computational-fluid-dynamics approaches based on the unsteady Reynolds-averaged Navier–Stokes equations complemented with the k-ω shear-stress transport turbulence model. In particular, the dynamic stall phenomenon is correctly simulated, providing lift coefficients in a hysteresis cycle. In addition, the computational effort is strongly reduced compared to the other computational tools and therefore enables the model to be used in routines with several simulation calls (e.g., optimization).</description><subject>Aerodynamic coefficients</subject><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Optimization</subject><subject>Separation</subject><subject>Simulation</subject><subject>Software</subject><subject>Stall</subject><subject>Stalling</subject><subject>Suction</subject><subject>Turbulence models</subject><subject>Wind turbines</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVg_8gIIgeUnf2K9mLIK0flYqHqnhbpskGUpJs3U2K_fdG2oMoeBoGnnkZXkJOgY6YBHEFo0cqueB0jwxAch7zVL7vkwGlFGIQkh2SoxCW_caSFAbketo0bo1tubbRpAyZt62N35xv7Wf05HJbRYXz0WTTYF1m0bzFqormZd1V_YlrwjE5KLAK9mQ3h-T17vZl_BDPnu-n45tZjFzoNrZcc6szgchRpjlVGqWVBWOpAlzoQkttEwTNudZKshwLoJCnAoROUScLPiQX29yVdx-dDa2p-2dtVWFjXRcMKEVpwpUUPT37RZeu803_nWFCA2egJfynQAmmdCIT3avLrcq8C8Hbwqx8WaPfGKDmu28DZtd3b8-3FkvEH2l_4BexDnrI</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Antonini, Enrico G. A</creator><creator>Bedon, Gabriele</creator><creator>De Betta, Stefano</creator><creator>Michelini, Luca</creator><creator>Raciti Castelli, Marco</creator><creator>Benini, Ernesto</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201502</creationdate><title>Innovative Discrete-Vortex Model for Dynamic Stall Simulations</title><author>Antonini, Enrico G. A ; Bedon, Gabriele ; De Betta, Stefano ; Michelini, Luca ; Raciti Castelli, Marco ; Benini, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-e393e9c4aa3a58d069a5e5f22861ab9f959e7a193399652daf101d841498a97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerodynamic coefficients</topic><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Optimization</topic><topic>Separation</topic><topic>Simulation</topic><topic>Software</topic><topic>Stall</topic><topic>Stalling</topic><topic>Suction</topic><topic>Turbulence models</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonini, Enrico G. A</creatorcontrib><creatorcontrib>Bedon, Gabriele</creatorcontrib><creatorcontrib>De Betta, Stefano</creatorcontrib><creatorcontrib>Michelini, Luca</creatorcontrib><creatorcontrib>Raciti Castelli, Marco</creatorcontrib><creatorcontrib>Benini, Ernesto</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonini, Enrico G. A</au><au>Bedon, Gabriele</au><au>De Betta, Stefano</au><au>Michelini, Luca</au><au>Raciti Castelli, Marco</au><au>Benini, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative Discrete-Vortex Model for Dynamic Stall Simulations</atitle><jtitle>AIAA journal</jtitle><date>2015-02</date><risdate>2015</risdate><volume>53</volume><issue>2</issue><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>An innovative model based on the vortex theory is presented with the aim of simulating the two-dimensional airfoil dynamic behavior at pitching reduced frequencies related to vertical axis wind-turbine operative conditions. The model relies on the introduction of a second separated wake from the suction side to correctly account for the aerodynamic effects of stall conditions and is provided with correction models whose aim is to consider the dynamic evolution of the shed vortices and of the separation point. The model receives as input experimental data to estimate the nonoscillating steady-state separation point for different angles of attack. A validation procedure confirmed the model capabilities to provide reliable numerical estimations of the lift coefficient for a pitching airfoil compared to experimental tests and computational-fluid-dynamics approaches based on the unsteady Reynolds-averaged Navier–Stokes equations complemented with the k-ω shear-stress transport turbulence model. In particular, the dynamic stall phenomenon is correctly simulated, providing lift coefficients in a hysteresis cycle. In addition, the computational effort is strongly reduced compared to the other computational tools and therefore enables the model to be used in routines with several simulation calls (e.g., optimization).</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J053430</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2015-02, Vol.53 (2), p.479-485
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_1642697579
source Alma/SFX Local Collection
subjects Aerodynamic coefficients
Aerodynamics
Aircraft
Airfoils
Angle of attack
Computation
Computational fluid dynamics
Computer simulation
Dynamics
Fluid flow
Mathematical models
Navier-Stokes equations
Optimization
Separation
Simulation
Software
Stall
Stalling
Suction
Turbulence models
Wind turbines
title Innovative Discrete-Vortex Model for Dynamic Stall Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20Discrete-Vortex%20Model%20for%20Dynamic%20Stall%20Simulations&rft.jtitle=AIAA%20journal&rft.au=Antonini,%20Enrico%20G.%20A&rft.date=2015-02&rft.volume=53&rft.issue=2&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J053430&rft_dat=%3Cproquest_cross%3E1660073654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642697579&rft_id=info:pmid/&rfr_iscdi=true