Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors

In this paper, detailed physical mechanisms of gate-induced drain leakage (GIDL) in gate-all-around silicon nanowire transistors (SNWTs) are investigated and verified by experiments and TCAD studies. The results show that the SNWTs will suffer from a more severe GIDL issue in small diameter (D nw )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2015-01, Vol.62 (1), p.213-219
Hauptverfasser: Fan, Jiewen, Li, Ming, Xu, Xiaoyan, Yang, Yuancheng, Xuan, Haoran, Huang, Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 213
container_title IEEE transactions on electron devices
container_volume 62
creator Fan, Jiewen
Li, Ming
Xu, Xiaoyan
Yang, Yuancheng
Xuan, Haoran
Huang, Ru
description In this paper, detailed physical mechanisms of gate-induced drain leakage (GIDL) in gate-all-around silicon nanowire transistors (SNWTs) are investigated and verified by experiments and TCAD studies. The results show that the SNWTs will suffer from a more severe GIDL issue in small diameter (D nw ) devices under low IV gs I. It is believed that this unexpected GIDL problem in SNWTs origins from the longitudinal band-to-band tunneling (L-BTBT) at the body/drain junction enhanced by the strong gate coupling to the depletion region, which usually can be neglected in planar devices. On the other hand, the traditional transverse BTBT (T-BTBT) only dominates at high IV gs I with relatively large D nw . Systematic study of GIDL dependence on process parameters, including D nw cross-sectional shape, doping, and overlap length (L ov ), shows that both T-BTBT and L-BTBT can be alleviated by reducing the doping and rounding the corner, but L-BTBT is worsened by reducing D nw and L ov despite of the alleviated T-BTBT. As the extension process engineering strongly impacts the short-channel effect and driving current of SNWTs, a GIDL optimization strategy considering the leakage power and device performance is given for low-power SNWT design.
doi_str_mv 10.1109/TED.2014.2371916
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1640794581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6975118</ieee_id><sourcerecordid>3539328341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6434e18f7e252a2f25fd4de061ad10333703d124d27a8c4ab2c48574736ec44f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfO4epa11oejBeg4xma2pdbcmW8R_b0rF08zA-8wwDyHXQCcAtL5bzWcTRkFMGNdQgzohI5BSl7US6pSMKIWqrHnFz8lFSps8KiHYiCyaLoX1-1A03dAXCztg2XR-79AXs2hDVyzRftg1Frl9Cdvg-q54sl3_HSIWq2gznYY-pkty1tptwqu_OiavD_PV9LFcPi-a6f2ydFzBUCrBBULVamSSWdYy2XrhkSqwHijnXFPugQnPtK2csG_MiUpqoblCJ0TLx-T2uHcX-689psFs-n3s8kmTP6K6FrKCnKLHlIt9ShFbs4vh08YfA9QcdJmsyxx0mT9dGbk5IgER_-Oq1hKg4r_xnWRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640794581</pqid></control><display><type>article</type><title>Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Jiewen ; Li, Ming ; Xu, Xiaoyan ; Yang, Yuancheng ; Xuan, Haoran ; Huang, Ru</creator><creatorcontrib>Fan, Jiewen ; Li, Ming ; Xu, Xiaoyan ; Yang, Yuancheng ; Xuan, Haoran ; Huang, Ru</creatorcontrib><description>In this paper, detailed physical mechanisms of gate-induced drain leakage (GIDL) in gate-all-around silicon nanowire transistors (SNWTs) are investigated and verified by experiments and TCAD studies. The results show that the SNWTs will suffer from a more severe GIDL issue in small diameter (D nw ) devices under low IV gs I. It is believed that this unexpected GIDL problem in SNWTs origins from the longitudinal band-to-band tunneling (L-BTBT) at the body/drain junction enhanced by the strong gate coupling to the depletion region, which usually can be neglected in planar devices. On the other hand, the traditional transverse BTBT (T-BTBT) only dominates at high IV gs I with relatively large D nw . Systematic study of GIDL dependence on process parameters, including D nw cross-sectional shape, doping, and overlap length (L ov ), shows that both T-BTBT and L-BTBT can be alleviated by reducing the doping and rounding the corner, but L-BTBT is worsened by reducing D nw and L ov despite of the alleviated T-BTBT. As the extension process engineering strongly impacts the short-channel effect and driving current of SNWTs, a GIDL optimization strategy considering the leakage power and device performance is given for low-power SNWT design.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2014.2371916</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band-to-band tunneling (BTBT) ; CMOS technology ; Doping ; gate-induced drain leakage (GIDL) ; Junctions ; Logic gates ; Optimization ; power consumption ; Shape ; Silicon ; silicon nanowire transistors (SNWTs) ; Tunneling</subject><ispartof>IEEE transactions on electron devices, 2015-01, Vol.62 (1), p.213-219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-6434e18f7e252a2f25fd4de061ad10333703d124d27a8c4ab2c48574736ec44f3</citedby><cites>FETCH-LOGICAL-c361t-6434e18f7e252a2f25fd4de061ad10333703d124d27a8c4ab2c48574736ec44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6975118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6975118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Jiewen</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Xu, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Yuancheng</creatorcontrib><creatorcontrib>Xuan, Haoran</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><title>Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, detailed physical mechanisms of gate-induced drain leakage (GIDL) in gate-all-around silicon nanowire transistors (SNWTs) are investigated and verified by experiments and TCAD studies. The results show that the SNWTs will suffer from a more severe GIDL issue in small diameter (D nw ) devices under low IV gs I. It is believed that this unexpected GIDL problem in SNWTs origins from the longitudinal band-to-band tunneling (L-BTBT) at the body/drain junction enhanced by the strong gate coupling to the depletion region, which usually can be neglected in planar devices. On the other hand, the traditional transverse BTBT (T-BTBT) only dominates at high IV gs I with relatively large D nw . Systematic study of GIDL dependence on process parameters, including D nw cross-sectional shape, doping, and overlap length (L ov ), shows that both T-BTBT and L-BTBT can be alleviated by reducing the doping and rounding the corner, but L-BTBT is worsened by reducing D nw and L ov despite of the alleviated T-BTBT. As the extension process engineering strongly impacts the short-channel effect and driving current of SNWTs, a GIDL optimization strategy considering the leakage power and device performance is given for low-power SNWT design.</description><subject>Band-to-band tunneling (BTBT)</subject><subject>CMOS technology</subject><subject>Doping</subject><subject>gate-induced drain leakage (GIDL)</subject><subject>Junctions</subject><subject>Logic gates</subject><subject>Optimization</subject><subject>power consumption</subject><subject>Shape</subject><subject>Silicon</subject><subject>silicon nanowire transistors (SNWTs)</subject><subject>Tunneling</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfO4epa11oejBeg4xma2pdbcmW8R_b0rF08zA-8wwDyHXQCcAtL5bzWcTRkFMGNdQgzohI5BSl7US6pSMKIWqrHnFz8lFSps8KiHYiCyaLoX1-1A03dAXCztg2XR-79AXs2hDVyzRftg1Frl9Cdvg-q54sl3_HSIWq2gznYY-pkty1tptwqu_OiavD_PV9LFcPi-a6f2ydFzBUCrBBULVamSSWdYy2XrhkSqwHijnXFPugQnPtK2csG_MiUpqoblCJ0TLx-T2uHcX-689psFs-n3s8kmTP6K6FrKCnKLHlIt9ShFbs4vh08YfA9QcdJmsyxx0mT9dGbk5IgER_-Oq1hKg4r_xnWRO</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Fan, Jiewen</creator><creator>Li, Ming</creator><creator>Xu, Xiaoyan</creator><creator>Yang, Yuancheng</creator><creator>Xuan, Haoran</creator><creator>Huang, Ru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors</title><author>Fan, Jiewen ; Li, Ming ; Xu, Xiaoyan ; Yang, Yuancheng ; Xuan, Haoran ; Huang, Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6434e18f7e252a2f25fd4de061ad10333703d124d27a8c4ab2c48574736ec44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Band-to-band tunneling (BTBT)</topic><topic>CMOS technology</topic><topic>Doping</topic><topic>gate-induced drain leakage (GIDL)</topic><topic>Junctions</topic><topic>Logic gates</topic><topic>Optimization</topic><topic>power consumption</topic><topic>Shape</topic><topic>Silicon</topic><topic>silicon nanowire transistors (SNWTs)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiewen</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Xu, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Yuancheng</creatorcontrib><creatorcontrib>Xuan, Haoran</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Jiewen</au><au>Li, Ming</au><au>Xu, Xiaoyan</au><au>Yang, Yuancheng</au><au>Xuan, Haoran</au><au>Huang, Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>213</spage><epage>219</epage><pages>213-219</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, detailed physical mechanisms of gate-induced drain leakage (GIDL) in gate-all-around silicon nanowire transistors (SNWTs) are investigated and verified by experiments and TCAD studies. The results show that the SNWTs will suffer from a more severe GIDL issue in small diameter (D nw ) devices under low IV gs I. It is believed that this unexpected GIDL problem in SNWTs origins from the longitudinal band-to-band tunneling (L-BTBT) at the body/drain junction enhanced by the strong gate coupling to the depletion region, which usually can be neglected in planar devices. On the other hand, the traditional transverse BTBT (T-BTBT) only dominates at high IV gs I with relatively large D nw . Systematic study of GIDL dependence on process parameters, including D nw cross-sectional shape, doping, and overlap length (L ov ), shows that both T-BTBT and L-BTBT can be alleviated by reducing the doping and rounding the corner, but L-BTBT is worsened by reducing D nw and L ov despite of the alleviated T-BTBT. As the extension process engineering strongly impacts the short-channel effect and driving current of SNWTs, a GIDL optimization strategy considering the leakage power and device performance is given for low-power SNWT design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2014.2371916</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2015-01, Vol.62 (1), p.213-219
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_1640794581
source IEEE Electronic Library (IEL)
subjects Band-to-band tunneling (BTBT)
CMOS technology
Doping
gate-induced drain leakage (GIDL)
Junctions
Logic gates
Optimization
power consumption
Shape
Silicon
silicon nanowire transistors (SNWTs)
Tunneling
title Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20Into%20Gate-Induced%20Drain%20Leakage%20in%20Silicon%20Nanowire%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Fan,%20Jiewen&rft.date=2015-01-01&rft.volume=62&rft.issue=1&rft.spage=213&rft.epage=219&rft.pages=213-219&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2014.2371916&rft_dat=%3Cproquest_RIE%3E3539328341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640794581&rft_id=info:pmid/&rft_ieee_id=6975118&rfr_iscdi=true