Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux
Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2015-01, Vol.44 (1), p.348-355 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 1 |
container_start_page | 348 |
container_title | Journal of electronic materials |
container_volume | 44 |
creator | Suzuki, Ryosuke O. Fujisaka, Takeyuki Ito, Keita O. Meng, Xiangning Sui, Hong-Tao |
description | Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination of the finite-volume method and an original simultaneous solver for the heat transfer, thermoelectric, and electric transportation phenomena. Comparison with experimental results shows that the new solver could work well in the numerical calculations. The calculations predict that the Seebeck effect becomes larger for longer thermoelectric elements because of the larger temperature difference. The heat transfer to the cold surface is critical to determine the junction temperatures under a constant heat flux from the hot surface. The negative contribution from Peltier cooling and heating can be minimized when the current is smaller for longer elements. Therefore, a thicker TE module can generate more electric power even under a constant heat flux. |
doi_str_mv | 10.1007/s11664-014-3314-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1638857210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3533264711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-c1cc68e3c4984321c0d1760fca57ed1f4be00770807d61ac475632140b0085f83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rM5s_GY6m2FSpeWvAW0mxWt2w3NdkF209vynrw4uUNA7_3mHmE3CLcI0DxEBGl5BkgzxhLcjwjIxScZajk-zkZAZOYiZyJS3IV4xYABSockflTvXNtrH1rGjpJcoh1pL6iq08Xdt41znahtvTVl33jIl23pQt06tvYmbajC2c6Omv672tyUZkmupvfOSbr2fNqusiWb_OX6WSZWf4ou8yitVI5ljbFWY4WSiwkVNaIwpVY8Y1L3xSgoCglGssLIRPGYQOgRKXYmNwNufvgv3oXO731fUh3R42SKSWKHCFROFA2-BiDq_Q-1DsTDhpBn_rSQ1869aVPfelj8uSDJya2_XDhT_K_ph8zGWzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638857210</pqid></control><display><type>article</type><title>Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux</title><source>Springer Nature - Complete Springer Journals</source><creator>Suzuki, Ryosuke O. ; Fujisaka, Takeyuki ; Ito, Keita O. ; Meng, Xiangning ; Sui, Hong-Tao</creator><creatorcontrib>Suzuki, Ryosuke O. ; Fujisaka, Takeyuki ; Ito, Keita O. ; Meng, Xiangning ; Sui, Hong-Tao</creatorcontrib><description>Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination of the finite-volume method and an original simultaneous solver for the heat transfer, thermoelectric, and electric transportation phenomena. Comparison with experimental results shows that the new solver could work well in the numerical calculations. The calculations predict that the Seebeck effect becomes larger for longer thermoelectric elements because of the larger temperature difference. The heat transfer to the cold surface is critical to determine the junction temperatures under a constant heat flux from the hot surface. The negative contribution from Peltier cooling and heating can be minimized when the current is smaller for longer elements. Therefore, a thicker TE module can generate more electric power even under a constant heat flux.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3314-z</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electricity ; Electronics and Microelectronics ; Heat conductivity ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Solid State Physics ; Thermodynamics</subject><ispartof>Journal of electronic materials, 2015-01, Vol.44 (1), p.348-355</ispartof><rights>The Minerals, Metals & Materials Society 2014</rights><rights>The Minerals, Metals & Materials Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-c1cc68e3c4984321c0d1760fca57ed1f4be00770807d61ac475632140b0085f83</citedby><cites>FETCH-LOGICAL-c496t-c1cc68e3c4984321c0d1760fca57ed1f4be00770807d61ac475632140b0085f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3314-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3314-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Suzuki, Ryosuke O.</creatorcontrib><creatorcontrib>Fujisaka, Takeyuki</creatorcontrib><creatorcontrib>Ito, Keita O.</creatorcontrib><creatorcontrib>Meng, Xiangning</creatorcontrib><creatorcontrib>Sui, Hong-Tao</creatorcontrib><title>Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination of the finite-volume method and an original simultaneous solver for the heat transfer, thermoelectric, and electric transportation phenomena. Comparison with experimental results shows that the new solver could work well in the numerical calculations. The calculations predict that the Seebeck effect becomes larger for longer thermoelectric elements because of the larger temperature difference. The heat transfer to the cold surface is critical to determine the junction temperatures under a constant heat flux from the hot surface. The negative contribution from Peltier cooling and heating can be minimized when the current is smaller for longer elements. Therefore, a thicker TE module can generate more electric power even under a constant heat flux.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electricity</subject><subject>Electronics and Microelectronics</subject><subject>Heat conductivity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><subject>Thermodynamics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rM5s_GY6m2FSpeWvAW0mxWt2w3NdkF209vynrw4uUNA7_3mHmE3CLcI0DxEBGl5BkgzxhLcjwjIxScZajk-zkZAZOYiZyJS3IV4xYABSockflTvXNtrH1rGjpJcoh1pL6iq08Xdt41znahtvTVl33jIl23pQt06tvYmbajC2c6Omv672tyUZkmupvfOSbr2fNqusiWb_OX6WSZWf4ou8yitVI5ljbFWY4WSiwkVNaIwpVY8Y1L3xSgoCglGssLIRPGYQOgRKXYmNwNufvgv3oXO731fUh3R42SKSWKHCFROFA2-BiDq_Q-1DsTDhpBn_rSQ1869aVPfelj8uSDJya2_XDhT_K_ph8zGWzk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Suzuki, Ryosuke O.</creator><creator>Fujisaka, Takeyuki</creator><creator>Ito, Keita O.</creator><creator>Meng, Xiangning</creator><creator>Sui, Hong-Tao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150101</creationdate><title>Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux</title><author>Suzuki, Ryosuke O. ; Fujisaka, Takeyuki ; Ito, Keita O. ; Meng, Xiangning ; Sui, Hong-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-c1cc68e3c4984321c0d1760fca57ed1f4be00770807d61ac475632140b0085f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electricity</topic><topic>Electronics and Microelectronics</topic><topic>Heat conductivity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Ryosuke O.</creatorcontrib><creatorcontrib>Fujisaka, Takeyuki</creatorcontrib><creatorcontrib>Ito, Keita O.</creatorcontrib><creatorcontrib>Meng, Xiangning</creatorcontrib><creatorcontrib>Sui, Hong-Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Ryosuke O.</au><au>Fujisaka, Takeyuki</au><au>Ito, Keita O.</au><au>Meng, Xiangning</au><au>Sui, Hong-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>44</volume><issue>1</issue><spage>348</spage><epage>355</epage><pages>348-355</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Thermoelectric power generation is examined in the case of radiative heating. A constant heat flux is assumed in addition to consideration of the Seebeck effect, Peltier effect, and Joule heating with temperature-dependent material properties. Numerical evaluations are conducted using a combination of the finite-volume method and an original simultaneous solver for the heat transfer, thermoelectric, and electric transportation phenomena. Comparison with experimental results shows that the new solver could work well in the numerical calculations. The calculations predict that the Seebeck effect becomes larger for longer thermoelectric elements because of the larger temperature difference. The heat transfer to the cold surface is critical to determine the junction temperatures under a constant heat flux from the hot surface. The negative contribution from Peltier cooling and heating can be minimized when the current is smaller for longer elements. Therefore, a thicker TE module can generate more electric power even under a constant heat flux.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3314-z</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2015-01, Vol.44 (1), p.348-355 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1638857210 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Electricity Electronics and Microelectronics Heat conductivity Instrumentation Materials Science Optical and Electronic Materials Solid State Physics Thermodynamics |
title | Dimensional Analysis of Thermoelectric Modules Under Constant Heat Flux |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensional%20Analysis%20of%20Thermoelectric%20Modules%20Under%20Constant%20Heat%20Flux&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Suzuki,%20Ryosuke%20O.&rft.date=2015-01-01&rft.volume=44&rft.issue=1&rft.spage=348&rft.epage=355&rft.pages=348-355&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3314-z&rft_dat=%3Cproquest_cross%3E3533264711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638857210&rft_id=info:pmid/&rfr_iscdi=true |