Interactive ozone induces a negative feedback in CO2-driven climate change simulations
Interactively coupled climate chemistry models (CCMs) extend the number of feedback mechanisms in climate change simulations by including chemical feedback. In this study the radiative feedback from ozone changes on climate response and climate sensitivity is quantified for a series of simulations d...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2014-02, Vol.119 (4), p.1796-1805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1805 |
---|---|
container_issue | 4 |
container_start_page | 1796 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 119 |
creator | Dietmüller, S. Ponater, M. Sausen, R. |
description | Interactively coupled climate chemistry models (CCMs) extend the number of feedback mechanisms in climate change simulations by including chemical feedback. In this study the radiative feedback from ozone changes on climate response and climate sensitivity is quantified for a series of simulations driven by CO2 increases on top of a present‐day reference concentration level. Other possibly relevant feedback via atmospheric chemistry, e.g., via CH4 and N2O, is not fully quantified in the CCM setup as their concentrations are essentially fixed at the surface. In case of a CO2‐doubling simulation, the ozone feedback reduces the climate sensitivity parameter by 3.4%, from 0.70 K/(W m−2) without interactive chemistry to 0.68 K/(W m−2). In case of a 4*CO2 simulation, the reduction of the climate sensitivity parameter increases to 8.4%. An analysis of feedback reveals that the negative feedback of stratospheric ozone and the associated negative feedback change in stratospheric water vapor are mainly responsible for this damping. The feedback from tropospheric ozone changes is positive but much smaller. The nonlinearity in the climate sensitivity damping with increased CO2 concentrations is shown to be due to nonlinear feedback of ozone and stratospheric water vapor.
Key Points
Climate sensitivity damped if ozone feedback included under CO2 increase
Stratospheric ozone induces the largest chemical feedback component
Stratospheric water vapor feedback reduced due to ozone radiative feedback |
doi_str_mv | 10.1002/2013JD020575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1638396648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3532017451</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3039-7980017da91f57e60ad1a5e919e2c04a744fac8e6564751ea321a2391661a6033</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEtPYjR8QiXMh32mOaIOyadoE4usWhdYd3bp2NC0wfj2BoQlfbNnvY1svQqeUnFNC2AUjlE9GhBGp5QHqMapMFBujDve1fj5GA--XJERMuJCihx7HVQuNS9viHXD9VVeAiyrrUvDY4QoW7neQA2QvLl2FGR7OWZQ1oVvhtCzWrgWcvrpqAdgX664MQF35E3SUu9LD4C_30cP11f3wJprOk_HwchoVnHATaRMTQnXmDM2lBkVcRp0EQw2wlAinhchdGoOSSmhJwXFGHeOGKkWdIpz30dlu76ap3zrwrV3WXVOFk5YqHnOjlIiDiu9UH0UJW7tpwtvN1lJif5yz_52zk-RuJGkwLFDRjip8C597yjUrqzQP0qdZYtntdDYxIrYJ_wYERG_f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638396648</pqid></control><display><type>article</type><title>Interactive ozone induces a negative feedback in CO2-driven climate change simulations</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Dietmüller, S. ; Ponater, M. ; Sausen, R.</creator><creatorcontrib>Dietmüller, S. ; Ponater, M. ; Sausen, R.</creatorcontrib><description>Interactively coupled climate chemistry models (CCMs) extend the number of feedback mechanisms in climate change simulations by including chemical feedback. In this study the radiative feedback from ozone changes on climate response and climate sensitivity is quantified for a series of simulations driven by CO2 increases on top of a present‐day reference concentration level. Other possibly relevant feedback via atmospheric chemistry, e.g., via CH4 and N2O, is not fully quantified in the CCM setup as their concentrations are essentially fixed at the surface. In case of a CO2‐doubling simulation, the ozone feedback reduces the climate sensitivity parameter by 3.4%, from 0.70 K/(W m−2) without interactive chemistry to 0.68 K/(W m−2). In case of a 4*CO2 simulation, the reduction of the climate sensitivity parameter increases to 8.4%. An analysis of feedback reveals that the negative feedback of stratospheric ozone and the associated negative feedback change in stratospheric water vapor are mainly responsible for this damping. The feedback from tropospheric ozone changes is positive but much smaller. The nonlinearity in the climate sensitivity damping with increased CO2 concentrations is shown to be due to nonlinear feedback of ozone and stratospheric water vapor.
Key Points
Climate sensitivity damped if ozone feedback included under CO2 increase
Stratospheric ozone induces the largest chemical feedback component
Stratospheric water vapor feedback reduced due to ozone radiative feedback</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2013JD020575</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric chemistry ; Carbon dioxide ; chemical feedback ; Chemistry ; Climate change ; climate chemistry interaction ; climate sensitivity ; Geophysics ; Nitrous oxide ; Ozone ; Water vapor</subject><ispartof>Journal of geophysical research. Atmospheres, 2014-02, Vol.119 (4), p.1796-1805</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JD020575$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JD020575$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Dietmüller, S.</creatorcontrib><creatorcontrib>Ponater, M.</creatorcontrib><creatorcontrib>Sausen, R.</creatorcontrib><title>Interactive ozone induces a negative feedback in CO2-driven climate change simulations</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Interactively coupled climate chemistry models (CCMs) extend the number of feedback mechanisms in climate change simulations by including chemical feedback. In this study the radiative feedback from ozone changes on climate response and climate sensitivity is quantified for a series of simulations driven by CO2 increases on top of a present‐day reference concentration level. Other possibly relevant feedback via atmospheric chemistry, e.g., via CH4 and N2O, is not fully quantified in the CCM setup as their concentrations are essentially fixed at the surface. In case of a CO2‐doubling simulation, the ozone feedback reduces the climate sensitivity parameter by 3.4%, from 0.70 K/(W m−2) without interactive chemistry to 0.68 K/(W m−2). In case of a 4*CO2 simulation, the reduction of the climate sensitivity parameter increases to 8.4%. An analysis of feedback reveals that the negative feedback of stratospheric ozone and the associated negative feedback change in stratospheric water vapor are mainly responsible for this damping. The feedback from tropospheric ozone changes is positive but much smaller. The nonlinearity in the climate sensitivity damping with increased CO2 concentrations is shown to be due to nonlinear feedback of ozone and stratospheric water vapor.
Key Points
Climate sensitivity damped if ozone feedback included under CO2 increase
Stratospheric ozone induces the largest chemical feedback component
Stratospheric water vapor feedback reduced due to ozone radiative feedback</description><subject>Atmospheric chemistry</subject><subject>Carbon dioxide</subject><subject>chemical feedback</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>climate chemistry interaction</subject><subject>climate sensitivity</subject><subject>Geophysics</subject><subject>Nitrous oxide</subject><subject>Ozone</subject><subject>Water vapor</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEtPYjR8QiXMh32mOaIOyadoE4usWhdYd3bp2NC0wfj2BoQlfbNnvY1svQqeUnFNC2AUjlE9GhBGp5QHqMapMFBujDve1fj5GA--XJERMuJCihx7HVQuNS9viHXD9VVeAiyrrUvDY4QoW7neQA2QvLl2FGR7OWZQ1oVvhtCzWrgWcvrpqAdgX664MQF35E3SUu9LD4C_30cP11f3wJprOk_HwchoVnHATaRMTQnXmDM2lBkVcRp0EQw2wlAinhchdGoOSSmhJwXFGHeOGKkWdIpz30dlu76ap3zrwrV3WXVOFk5YqHnOjlIiDiu9UH0UJW7tpwtvN1lJif5yz_52zk-RuJGkwLFDRjip8C597yjUrqzQP0qdZYtntdDYxIrYJ_wYERG_f</recordid><startdate>20140227</startdate><enddate>20140227</enddate><creator>Dietmüller, S.</creator><creator>Ponater, M.</creator><creator>Sausen, R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20140227</creationdate><title>Interactive ozone induces a negative feedback in CO2-driven climate change simulations</title><author>Dietmüller, S. ; Ponater, M. ; Sausen, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3039-7980017da91f57e60ad1a5e919e2c04a744fac8e6564751ea321a2391661a6033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospheric chemistry</topic><topic>Carbon dioxide</topic><topic>chemical feedback</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>climate chemistry interaction</topic><topic>climate sensitivity</topic><topic>Geophysics</topic><topic>Nitrous oxide</topic><topic>Ozone</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietmüller, S.</creatorcontrib><creatorcontrib>Ponater, M.</creatorcontrib><creatorcontrib>Sausen, R.</creatorcontrib><collection>Istex</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietmüller, S.</au><au>Ponater, M.</au><au>Sausen, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive ozone induces a negative feedback in CO2-driven climate change simulations</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2014-02-27</date><risdate>2014</risdate><volume>119</volume><issue>4</issue><spage>1796</spage><epage>1805</epage><pages>1796-1805</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Interactively coupled climate chemistry models (CCMs) extend the number of feedback mechanisms in climate change simulations by including chemical feedback. In this study the radiative feedback from ozone changes on climate response and climate sensitivity is quantified for a series of simulations driven by CO2 increases on top of a present‐day reference concentration level. Other possibly relevant feedback via atmospheric chemistry, e.g., via CH4 and N2O, is not fully quantified in the CCM setup as their concentrations are essentially fixed at the surface. In case of a CO2‐doubling simulation, the ozone feedback reduces the climate sensitivity parameter by 3.4%, from 0.70 K/(W m−2) without interactive chemistry to 0.68 K/(W m−2). In case of a 4*CO2 simulation, the reduction of the climate sensitivity parameter increases to 8.4%. An analysis of feedback reveals that the negative feedback of stratospheric ozone and the associated negative feedback change in stratospheric water vapor are mainly responsible for this damping. The feedback from tropospheric ozone changes is positive but much smaller. The nonlinearity in the climate sensitivity damping with increased CO2 concentrations is shown to be due to nonlinear feedback of ozone and stratospheric water vapor.
Key Points
Climate sensitivity damped if ozone feedback included under CO2 increase
Stratospheric ozone induces the largest chemical feedback component
Stratospheric water vapor feedback reduced due to ozone radiative feedback</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JD020575</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2014-02, Vol.119 (4), p.1796-1805 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_1638396648 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Atmospheric chemistry Carbon dioxide chemical feedback Chemistry Climate change climate chemistry interaction climate sensitivity Geophysics Nitrous oxide Ozone Water vapor |
title | Interactive ozone induces a negative feedback in CO2-driven climate change simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20ozone%20induces%20a%20negative%20feedback%20in%20CO2-driven%20climate%20change%20simulations&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Dietm%C3%BCller,%20S.&rft.date=2014-02-27&rft.volume=119&rft.issue=4&rft.spage=1796&rft.epage=1805&rft.pages=1796-1805&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2013JD020575&rft_dat=%3Cproquest_wiley%3E3532017451%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638396648&rft_id=info:pmid/&rfr_iscdi=true |