First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas
Simultaneous in situ measurements of ozone, CO, and NOy have been made for the first time at a high altitude site Nainital (29.37°N, 79.45°E, 1958 m above mean sea level) in the central Himalayas during 2009–2011. CO and NOy levels discern slight enhancements during the daytime, unlike in ozone. The...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2014-02, Vol.119 (3), p.1592-1611 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1611 |
---|---|
container_issue | 3 |
container_start_page | 1592 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 119 |
creator | Sarangi, Tapaswini Naja, Manish Ojha, N. Kumar, R. Lal, S. Venkataramani, S. Kumar, A. Sagar, R. Chandola, H. C. |
description | Simultaneous in situ measurements of ozone, CO, and NOy have been made for the first time at a high altitude site Nainital (29.37°N, 79.45°E, 1958 m above mean sea level) in the central Himalayas during 2009–2011. CO and NOy levels discern slight enhancements during the daytime, unlike in ozone. The diurnal patterns are attributed mainly to the dynamical processes including vertical winds and the boundary layer evolution. Springtime higher levels of ozone (57.5 ± 12.6 ppbv), CO (215.2 ± 147 ppbv), and NOy (1918 ± 1769.3 parts per trillion by volume (pptv)) have been attributed mainly to regional pollution supplemented with northern Indian biomass burning. However, lower levels of ozone (34.4 ± 18.9 ppbv), CO (146.6 ± 71 ppbv), and NOy (1128.6 ± 1035 pptv) during summer monsoon are shown to be associated with the arrival of air mass originated from marine regions. Downward transport from higher altitudes is estimated to enhance surface ozone levels over Nainital by 6.1–18.8 ppbv. The classification based on air mass residence time, altitude variations along trajectory, and boundary layer shows higher levels of ozone (57 ± 14 ppbv), CO (206 ± 125 ppbv), and NOy (1856 ± 1596 pptv) in the continental air masses when compared with their respective values (28 ± 13 ppbv, 142 ± 47 ppbv, and 226 ± 165 pptv) in the regional background air masses. In general, positive interspecies correlations are observed which suggest the transport of air mass from common source regions (except during winter). Ozone‐CO and ozone‐NOy slope values are found to be lower in comparison to those at other global sites, which clearly indicates incomplete in situ photochemistry and greater role of transport processes in this region. The higher CO/NOy value also confirms minimal influence of fresh emissions at the site. Enhancements in ozone, CO, and NOy during high fire activity period are estimated to be 4–18%, 15–76%, and 35–51%, respectively. Despite higher CO and NOy concentrations at Nainital, ozone levels are nearly similar to those at other global high‐altitude sites.
Key Points
First simultaneous observations of O3, CO & NOy in the central Himalayas
Inter‐correlations indicate key role of transport and minimal local influences
Despite of higher CO & NOy, O3 levels are similar to the other sites |
doi_str_mv | 10.1002/2013JD020631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1638396479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3532017111</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3698-feee5192950387a8e984fd4b017ea8f158aadb79073f46dd62045add1387421b3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhRdRULQ3f0DAq6vJJptNjtJqay0WtKK3MHVnbXS7W5OsWg_-diMVcS4zDN97PF6SHDJ6wijNTjPK-HhAMyo520r2MiZ1qrSW23938bCb9Lx_pnEU5SIXe8nXhXU-EG-XXR2gwbbzZIngO4dLbIInbUXaz7bBY9KfHhNoSnI9XRMIBMjCPi1SqIMNXYnE4ZNtG6jjsXLooxiCfcNoHZDYhoQFksf4dREZ2SXUsAZ_kOxUUHvs_e795O7ifNYfpZPp8LJ_Nkktl1qlFSLmTGc6p1wVoFArUZViTlmBoCqWK4ByXmha8ErIspQZFTmUJYu0yNic7ydHG9-Va1879ME8t52Lab1hkiuupSh0pPiGerc1rs3KxZhubRg1Pw2b_w2b8fBmkDMqVFSlG5X1AT_-VOBejCx4kZv766EZzOStuMln5op_A6k5f5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638396479</pqid></control><display><type>article</type><title>First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Sarangi, Tapaswini ; Naja, Manish ; Ojha, N. ; Kumar, R. ; Lal, S. ; Venkataramani, S. ; Kumar, A. ; Sagar, R. ; Chandola, H. C.</creator><creatorcontrib>Sarangi, Tapaswini ; Naja, Manish ; Ojha, N. ; Kumar, R. ; Lal, S. ; Venkataramani, S. ; Kumar, A. ; Sagar, R. ; Chandola, H. C.</creatorcontrib><description>Simultaneous in situ measurements of ozone, CO, and NOy have been made for the first time at a high altitude site Nainital (29.37°N, 79.45°E, 1958 m above mean sea level) in the central Himalayas during 2009–2011. CO and NOy levels discern slight enhancements during the daytime, unlike in ozone. The diurnal patterns are attributed mainly to the dynamical processes including vertical winds and the boundary layer evolution. Springtime higher levels of ozone (57.5 ± 12.6 ppbv), CO (215.2 ± 147 ppbv), and NOy (1918 ± 1769.3 parts per trillion by volume (pptv)) have been attributed mainly to regional pollution supplemented with northern Indian biomass burning. However, lower levels of ozone (34.4 ± 18.9 ppbv), CO (146.6 ± 71 ppbv), and NOy (1128.6 ± 1035 pptv) during summer monsoon are shown to be associated with the arrival of air mass originated from marine regions. Downward transport from higher altitudes is estimated to enhance surface ozone levels over Nainital by 6.1–18.8 ppbv. The classification based on air mass residence time, altitude variations along trajectory, and boundary layer shows higher levels of ozone (57 ± 14 ppbv), CO (206 ± 125 ppbv), and NOy (1856 ± 1596 pptv) in the continental air masses when compared with their respective values (28 ± 13 ppbv, 142 ± 47 ppbv, and 226 ± 165 pptv) in the regional background air masses. In general, positive interspecies correlations are observed which suggest the transport of air mass from common source regions (except during winter). Ozone‐CO and ozone‐NOy slope values are found to be lower in comparison to those at other global sites, which clearly indicates incomplete in situ photochemistry and greater role of transport processes in this region. The higher CO/NOy value also confirms minimal influence of fresh emissions at the site. Enhancements in ozone, CO, and NOy during high fire activity period are estimated to be 4–18%, 15–76%, and 35–51%, respectively. Despite higher CO and NOy concentrations at Nainital, ozone levels are nearly similar to those at other global high‐altitude sites.
Key Points
First simultaneous observations of O3, CO & NOy in the central Himalayas
Inter‐correlations indicate key role of transport and minimal local influences
Despite of higher CO & NOy, O3 levels are similar to the other sites</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2013JD020631</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Air masses ; Altitude ; Boundary layers ; continental air-mass ; Emission measurements ; Geophysics ; Greenhouse gases ; Himalayas ; In situ measurement ; Ozone ; Photochemistry ; regional background ozone ; regional pollution ; Transport processes ; vertical winds</subject><ispartof>Journal of geophysical research. Atmospheres, 2014-02, Vol.119 (3), p.1592-1611</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JD020631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JD020631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Sarangi, Tapaswini</creatorcontrib><creatorcontrib>Naja, Manish</creatorcontrib><creatorcontrib>Ojha, N.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><creatorcontrib>Lal, S.</creatorcontrib><creatorcontrib>Venkataramani, S.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Sagar, R.</creatorcontrib><creatorcontrib>Chandola, H. C.</creatorcontrib><title>First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Simultaneous in situ measurements of ozone, CO, and NOy have been made for the first time at a high altitude site Nainital (29.37°N, 79.45°E, 1958 m above mean sea level) in the central Himalayas during 2009–2011. CO and NOy levels discern slight enhancements during the daytime, unlike in ozone. The diurnal patterns are attributed mainly to the dynamical processes including vertical winds and the boundary layer evolution. Springtime higher levels of ozone (57.5 ± 12.6 ppbv), CO (215.2 ± 147 ppbv), and NOy (1918 ± 1769.3 parts per trillion by volume (pptv)) have been attributed mainly to regional pollution supplemented with northern Indian biomass burning. However, lower levels of ozone (34.4 ± 18.9 ppbv), CO (146.6 ± 71 ppbv), and NOy (1128.6 ± 1035 pptv) during summer monsoon are shown to be associated with the arrival of air mass originated from marine regions. Downward transport from higher altitudes is estimated to enhance surface ozone levels over Nainital by 6.1–18.8 ppbv. The classification based on air mass residence time, altitude variations along trajectory, and boundary layer shows higher levels of ozone (57 ± 14 ppbv), CO (206 ± 125 ppbv), and NOy (1856 ± 1596 pptv) in the continental air masses when compared with their respective values (28 ± 13 ppbv, 142 ± 47 ppbv, and 226 ± 165 pptv) in the regional background air masses. In general, positive interspecies correlations are observed which suggest the transport of air mass from common source regions (except during winter). Ozone‐CO and ozone‐NOy slope values are found to be lower in comparison to those at other global sites, which clearly indicates incomplete in situ photochemistry and greater role of transport processes in this region. The higher CO/NOy value also confirms minimal influence of fresh emissions at the site. Enhancements in ozone, CO, and NOy during high fire activity period are estimated to be 4–18%, 15–76%, and 35–51%, respectively. Despite higher CO and NOy concentrations at Nainital, ozone levels are nearly similar to those at other global high‐altitude sites.
Key Points
First simultaneous observations of O3, CO & NOy in the central Himalayas
Inter‐correlations indicate key role of transport and minimal local influences
Despite of higher CO & NOy, O3 levels are similar to the other sites</description><subject>Air masses</subject><subject>Altitude</subject><subject>Boundary layers</subject><subject>continental air-mass</subject><subject>Emission measurements</subject><subject>Geophysics</subject><subject>Greenhouse gases</subject><subject>Himalayas</subject><subject>In situ measurement</subject><subject>Ozone</subject><subject>Photochemistry</subject><subject>regional background ozone</subject><subject>regional pollution</subject><subject>Transport processes</subject><subject>vertical winds</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhRdRULQ3f0DAq6vJJptNjtJqay0WtKK3MHVnbXS7W5OsWg_-diMVcS4zDN97PF6SHDJ6wijNTjPK-HhAMyo520r2MiZ1qrSW23938bCb9Lx_pnEU5SIXe8nXhXU-EG-XXR2gwbbzZIngO4dLbIInbUXaz7bBY9KfHhNoSnI9XRMIBMjCPi1SqIMNXYnE4ZNtG6jjsXLooxiCfcNoHZDYhoQFksf4dREZ2SXUsAZ_kOxUUHvs_e795O7ifNYfpZPp8LJ_Nkktl1qlFSLmTGc6p1wVoFArUZViTlmBoCqWK4ByXmha8ErIspQZFTmUJYu0yNic7ydHG9-Va1879ME8t52Lab1hkiuupSh0pPiGerc1rs3KxZhubRg1Pw2b_w2b8fBmkDMqVFSlG5X1AT_-VOBejCx4kZv766EZzOStuMln5op_A6k5f5Y</recordid><startdate>20140216</startdate><enddate>20140216</enddate><creator>Sarangi, Tapaswini</creator><creator>Naja, Manish</creator><creator>Ojha, N.</creator><creator>Kumar, R.</creator><creator>Lal, S.</creator><creator>Venkataramani, S.</creator><creator>Kumar, A.</creator><creator>Sagar, R.</creator><creator>Chandola, H. C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20140216</creationdate><title>First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas</title><author>Sarangi, Tapaswini ; Naja, Manish ; Ojha, N. ; Kumar, R. ; Lal, S. ; Venkataramani, S. ; Kumar, A. ; Sagar, R. ; Chandola, H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3698-feee5192950387a8e984fd4b017ea8f158aadb79073f46dd62045add1387421b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air masses</topic><topic>Altitude</topic><topic>Boundary layers</topic><topic>continental air-mass</topic><topic>Emission measurements</topic><topic>Geophysics</topic><topic>Greenhouse gases</topic><topic>Himalayas</topic><topic>In situ measurement</topic><topic>Ozone</topic><topic>Photochemistry</topic><topic>regional background ozone</topic><topic>regional pollution</topic><topic>Transport processes</topic><topic>vertical winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarangi, Tapaswini</creatorcontrib><creatorcontrib>Naja, Manish</creatorcontrib><creatorcontrib>Ojha, N.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><creatorcontrib>Lal, S.</creatorcontrib><creatorcontrib>Venkataramani, S.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Sagar, R.</creatorcontrib><creatorcontrib>Chandola, H. C.</creatorcontrib><collection>Istex</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarangi, Tapaswini</au><au>Naja, Manish</au><au>Ojha, N.</au><au>Kumar, R.</au><au>Lal, S.</au><au>Venkataramani, S.</au><au>Kumar, A.</au><au>Sagar, R.</au><au>Chandola, H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2014-02-16</date><risdate>2014</risdate><volume>119</volume><issue>3</issue><spage>1592</spage><epage>1611</epage><pages>1592-1611</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Simultaneous in situ measurements of ozone, CO, and NOy have been made for the first time at a high altitude site Nainital (29.37°N, 79.45°E, 1958 m above mean sea level) in the central Himalayas during 2009–2011. CO and NOy levels discern slight enhancements during the daytime, unlike in ozone. The diurnal patterns are attributed mainly to the dynamical processes including vertical winds and the boundary layer evolution. Springtime higher levels of ozone (57.5 ± 12.6 ppbv), CO (215.2 ± 147 ppbv), and NOy (1918 ± 1769.3 parts per trillion by volume (pptv)) have been attributed mainly to regional pollution supplemented with northern Indian biomass burning. However, lower levels of ozone (34.4 ± 18.9 ppbv), CO (146.6 ± 71 ppbv), and NOy (1128.6 ± 1035 pptv) during summer monsoon are shown to be associated with the arrival of air mass originated from marine regions. Downward transport from higher altitudes is estimated to enhance surface ozone levels over Nainital by 6.1–18.8 ppbv. The classification based on air mass residence time, altitude variations along trajectory, and boundary layer shows higher levels of ozone (57 ± 14 ppbv), CO (206 ± 125 ppbv), and NOy (1856 ± 1596 pptv) in the continental air masses when compared with their respective values (28 ± 13 ppbv, 142 ± 47 ppbv, and 226 ± 165 pptv) in the regional background air masses. In general, positive interspecies correlations are observed which suggest the transport of air mass from common source regions (except during winter). Ozone‐CO and ozone‐NOy slope values are found to be lower in comparison to those at other global sites, which clearly indicates incomplete in situ photochemistry and greater role of transport processes in this region. The higher CO/NOy value also confirms minimal influence of fresh emissions at the site. Enhancements in ozone, CO, and NOy during high fire activity period are estimated to be 4–18%, 15–76%, and 35–51%, respectively. Despite higher CO and NOy concentrations at Nainital, ozone levels are nearly similar to those at other global high‐altitude sites.
Key Points
First simultaneous observations of O3, CO & NOy in the central Himalayas
Inter‐correlations indicate key role of transport and minimal local influences
Despite of higher CO & NOy, O3 levels are similar to the other sites</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JD020631</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2014-02, Vol.119 (3), p.1592-1611 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_1638396479 |
source | Wiley-Blackwell Journals; Wiley Online Library Journals; Alma/SFX Local Collection |
subjects | Air masses Altitude Boundary layers continental air-mass Emission measurements Geophysics Greenhouse gases Himalayas In situ measurement Ozone Photochemistry regional background ozone regional pollution Transport processes vertical winds |
title | First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20simultaneous%20measurements%20of%20ozone,%20CO,%20and%20NOy%20at%20a%20high-altitude%20regional%20representative%20site%20in%20the%20central%20Himalayas&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sarangi,%20Tapaswini&rft.date=2014-02-16&rft.volume=119&rft.issue=3&rft.spage=1592&rft.epage=1611&rft.pages=1592-1611&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2013JD020631&rft_dat=%3Cproquest_wiley%3E3532017111%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638396479&rft_id=info:pmid/&rfr_iscdi=true |