A combined laboratory and modeling study of the infrared extinction and visible light scattering properties of mineral dust aerosol

Optical properties, including infrared (IR) extinction and visible light scattering of mineral dust aerosol, are measured experimentally and compared to modeling results using T‐matrix theory. The work includes studies of complex, authentic field samples of Saharan sand, Iowa loess, and Arizona road...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2013-01, Vol.118 (2), p.435-452
Hauptverfasser: Alexander, Jennifer M., Laskina, Olga, Meland, Brian, Young, Mark A., Grassian, Vicki H., Kleiber, Paul D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 2
container_start_page 435
container_title Journal of geophysical research. Atmospheres
container_volume 118
creator Alexander, Jennifer M.
Laskina, Olga
Meland, Brian
Young, Mark A.
Grassian, Vicki H.
Kleiber, Paul D.
description Optical properties, including infrared (IR) extinction and visible light scattering of mineral dust aerosol, are measured experimentally and compared to modeling results using T‐matrix theory. The work includes studies of complex, authentic field samples of Saharan sand, Iowa loess, and Arizona road dust (ARD). Particle size distributions and aerosol optical properties are measured simultaneously. These authentic dust samples are treated as external mixtures of mineral components. The mineral compositions for the Saharan sand and Iowa loess samples have been reported by Laskina et al. [2012], and the mineralogy for ARD is derived here using a similar method. T‐matrix‐based simulations, using measured particle size distributions and a priori particle shape models, are carried out for each mineral component of the authentic samples. The simulated optical properties for the complex dust mixtures are obtained by a weighted average of the properties of the mineral components, based on a given sample mineralogy. T‐matrix simulations are then directly compared with the measured IR extinction spectra and visible light scattering phase function and linear polarization profiles for each sample. Generally good agreement between experiment and theory is obtained. Model simulations that account for differences in particle shape with mineralogy and include a broad range of eccentric spheroid shape parameters offer a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Key Points IR extinction and visible light scattering of mineral dust are studied Laboratory measurements are compared with T‐Matrix modeling results Good agreement between experiment and theory is found
doi_str_mv 10.1029/2012JD018751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1638355223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3531983101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4136-3a0a626cfe607d30955fc75fc12470d637b3decaf8ad747cd0eb26003065de643</originalsourceid><addsrcrecordid>eNp9kEFvEzEQhVeISlSlN36AJcSNpWN7be8eS0pTqoiKCgQ3y2vPti6bdWo7bXPmj-OQKuKEpZHn8L03M6-q3lD4QIF1JwwouzwD2ipBX1SHjMqubrtOvtz36uer6jilOyivBd6I5rD6fUpsWPZ-QkdG04docogbYiZHlsHh6KcbkvLabUgYSL5F4qchmlhofMp-stmH6S_94JPvRySjv7nNJFmTM8atehXDCmP2mLYWyzIpmpG4dcrEYAwpjK-rg8GMCY-f_6Pq-_mnb7OLenE1_zw7XdS2oVzW3ICRTNoBJSjHoRNisKoUZY0CJ7nquUNrhtY41SjrAHsmAThI4VA2_Kh6u_MtK92vMWV9F9ZxKiM1lbzlQjDGC_V-R9myXIo46FX0SxM3moLeJq3_Tbrg755NTTl6LOFM1qe9hikpFWWicHzHPfoRN__11Jfz6zMB0MiiqncqnzI-7VUm_tJScSX0jy9zfd2ew8fF15me8z9Tw50i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638355223</pqid></control><display><type>article</type><title>A combined laboratory and modeling study of the infrared extinction and visible light scattering properties of mineral dust aerosol</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Alexander, Jennifer M. ; Laskina, Olga ; Meland, Brian ; Young, Mark A. ; Grassian, Vicki H. ; Kleiber, Paul D.</creator><creatorcontrib>Alexander, Jennifer M. ; Laskina, Olga ; Meland, Brian ; Young, Mark A. ; Grassian, Vicki H. ; Kleiber, Paul D.</creatorcontrib><description>Optical properties, including infrared (IR) extinction and visible light scattering of mineral dust aerosol, are measured experimentally and compared to modeling results using T‐matrix theory. The work includes studies of complex, authentic field samples of Saharan sand, Iowa loess, and Arizona road dust (ARD). Particle size distributions and aerosol optical properties are measured simultaneously. These authentic dust samples are treated as external mixtures of mineral components. The mineral compositions for the Saharan sand and Iowa loess samples have been reported by Laskina et al. [2012], and the mineralogy for ARD is derived here using a similar method. T‐matrix‐based simulations, using measured particle size distributions and a priori particle shape models, are carried out for each mineral component of the authentic samples. The simulated optical properties for the complex dust mixtures are obtained by a weighted average of the properties of the mineral components, based on a given sample mineralogy. T‐matrix simulations are then directly compared with the measured IR extinction spectra and visible light scattering phase function and linear polarization profiles for each sample. Generally good agreement between experiment and theory is obtained. Model simulations that account for differences in particle shape with mineralogy and include a broad range of eccentric spheroid shape parameters offer a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Key Points IR extinction and visible light scattering of mineral dust are studied Laboratory measurements are compared with T‐Matrix modeling results Good agreement between experiment and theory is found</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2012JD018751</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosols ; Dust ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics ; Laboratories ; Light scattering ; Loess ; Meteorology ; mineral dust ; Mineralogy ; Optical properties ; Particle shape ; Particle size ; remote sensing ; Sand ; T-matrix method</subject><ispartof>Journal of geophysical research. Atmospheres, 2013-01, Vol.118 (2), p.435-452</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4136-3a0a626cfe607d30955fc75fc12470d637b3decaf8ad747cd0eb26003065de643</citedby><cites>FETCH-LOGICAL-c4136-3a0a626cfe607d30955fc75fc12470d637b3decaf8ad747cd0eb26003065de643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JD018751$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JD018751$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27667125$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexander, Jennifer M.</creatorcontrib><creatorcontrib>Laskina, Olga</creatorcontrib><creatorcontrib>Meland, Brian</creatorcontrib><creatorcontrib>Young, Mark A.</creatorcontrib><creatorcontrib>Grassian, Vicki H.</creatorcontrib><creatorcontrib>Kleiber, Paul D.</creatorcontrib><title>A combined laboratory and modeling study of the infrared extinction and visible light scattering properties of mineral dust aerosol</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Optical properties, including infrared (IR) extinction and visible light scattering of mineral dust aerosol, are measured experimentally and compared to modeling results using T‐matrix theory. The work includes studies of complex, authentic field samples of Saharan sand, Iowa loess, and Arizona road dust (ARD). Particle size distributions and aerosol optical properties are measured simultaneously. These authentic dust samples are treated as external mixtures of mineral components. The mineral compositions for the Saharan sand and Iowa loess samples have been reported by Laskina et al. [2012], and the mineralogy for ARD is derived here using a similar method. T‐matrix‐based simulations, using measured particle size distributions and a priori particle shape models, are carried out for each mineral component of the authentic samples. The simulated optical properties for the complex dust mixtures are obtained by a weighted average of the properties of the mineral components, based on a given sample mineralogy. T‐matrix simulations are then directly compared with the measured IR extinction spectra and visible light scattering phase function and linear polarization profiles for each sample. Generally good agreement between experiment and theory is obtained. Model simulations that account for differences in particle shape with mineralogy and include a broad range of eccentric spheroid shape parameters offer a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Key Points IR extinction and visible light scattering of mineral dust are studied Laboratory measurements are compared with T‐Matrix modeling results Good agreement between experiment and theory is found</description><subject>aerosol</subject><subject>Aerosols</subject><subject>Dust</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics</subject><subject>Laboratories</subject><subject>Light scattering</subject><subject>Loess</subject><subject>Meteorology</subject><subject>mineral dust</subject><subject>Mineralogy</subject><subject>Optical properties</subject><subject>Particle shape</subject><subject>Particle size</subject><subject>remote sensing</subject><subject>Sand</subject><subject>T-matrix method</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kEFvEzEQhVeISlSlN36AJcSNpWN7be8eS0pTqoiKCgQ3y2vPti6bdWo7bXPmj-OQKuKEpZHn8L03M6-q3lD4QIF1JwwouzwD2ipBX1SHjMqubrtOvtz36uer6jilOyivBd6I5rD6fUpsWPZ-QkdG04docogbYiZHlsHh6KcbkvLabUgYSL5F4qchmlhofMp-stmH6S_94JPvRySjv7nNJFmTM8atehXDCmP2mLYWyzIpmpG4dcrEYAwpjK-rg8GMCY-f_6Pq-_mnb7OLenE1_zw7XdS2oVzW3ICRTNoBJSjHoRNisKoUZY0CJ7nquUNrhtY41SjrAHsmAThI4VA2_Kh6u_MtK92vMWV9F9ZxKiM1lbzlQjDGC_V-R9myXIo46FX0SxM3moLeJq3_Tbrg755NTTl6LOFM1qe9hikpFWWicHzHPfoRN__11Jfz6zMB0MiiqncqnzI-7VUm_tJScSX0jy9zfd2ew8fF15me8z9Tw50i</recordid><startdate>20130127</startdate><enddate>20130127</enddate><creator>Alexander, Jennifer M.</creator><creator>Laskina, Olga</creator><creator>Meland, Brian</creator><creator>Young, Mark A.</creator><creator>Grassian, Vicki H.</creator><creator>Kleiber, Paul D.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20130127</creationdate><title>A combined laboratory and modeling study of the infrared extinction and visible light scattering properties of mineral dust aerosol</title><author>Alexander, Jennifer M. ; Laskina, Olga ; Meland, Brian ; Young, Mark A. ; Grassian, Vicki H. ; Kleiber, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4136-3a0a626cfe607d30955fc75fc12470d637b3decaf8ad747cd0eb26003065de643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>Dust</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics</topic><topic>Laboratories</topic><topic>Light scattering</topic><topic>Loess</topic><topic>Meteorology</topic><topic>mineral dust</topic><topic>Mineralogy</topic><topic>Optical properties</topic><topic>Particle shape</topic><topic>Particle size</topic><topic>remote sensing</topic><topic>Sand</topic><topic>T-matrix method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Jennifer M.</creatorcontrib><creatorcontrib>Laskina, Olga</creatorcontrib><creatorcontrib>Meland, Brian</creatorcontrib><creatorcontrib>Young, Mark A.</creatorcontrib><creatorcontrib>Grassian, Vicki H.</creatorcontrib><creatorcontrib>Kleiber, Paul D.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Jennifer M.</au><au>Laskina, Olga</au><au>Meland, Brian</au><au>Young, Mark A.</au><au>Grassian, Vicki H.</au><au>Kleiber, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined laboratory and modeling study of the infrared extinction and visible light scattering properties of mineral dust aerosol</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-01-27</date><risdate>2013</risdate><volume>118</volume><issue>2</issue><spage>435</spage><epage>452</epage><pages>435-452</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Optical properties, including infrared (IR) extinction and visible light scattering of mineral dust aerosol, are measured experimentally and compared to modeling results using T‐matrix theory. The work includes studies of complex, authentic field samples of Saharan sand, Iowa loess, and Arizona road dust (ARD). Particle size distributions and aerosol optical properties are measured simultaneously. These authentic dust samples are treated as external mixtures of mineral components. The mineral compositions for the Saharan sand and Iowa loess samples have been reported by Laskina et al. [2012], and the mineralogy for ARD is derived here using a similar method. T‐matrix‐based simulations, using measured particle size distributions and a priori particle shape models, are carried out for each mineral component of the authentic samples. The simulated optical properties for the complex dust mixtures are obtained by a weighted average of the properties of the mineral components, based on a given sample mineralogy. T‐matrix simulations are then directly compared with the measured IR extinction spectra and visible light scattering phase function and linear polarization profiles for each sample. Generally good agreement between experiment and theory is obtained. Model simulations that account for differences in particle shape with mineralogy and include a broad range of eccentric spheroid shape parameters offer a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Key Points IR extinction and visible light scattering of mineral dust are studied Laboratory measurements are compared with T‐Matrix modeling results Good agreement between experiment and theory is found</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JD018751</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2013-01, Vol.118 (2), p.435-452
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_1638355223
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Alma/SFX Local Collection
subjects aerosol
Aerosols
Dust
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics
Laboratories
Light scattering
Loess
Meteorology
mineral dust
Mineralogy
Optical properties
Particle shape
Particle size
remote sensing
Sand
T-matrix method
title A combined laboratory and modeling study of the infrared extinction and visible light scattering properties of mineral dust aerosol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20laboratory%20and%20modeling%20study%20of%20the%20infrared%20extinction%20and%20visible%20light%20scattering%20properties%20of%20mineral%20dust%20aerosol&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Alexander,%20Jennifer%20M.&rft.date=2013-01-27&rft.volume=118&rft.issue=2&rft.spage=435&rft.epage=452&rft.pages=435-452&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2012JD018751&rft_dat=%3Cproquest_cross%3E3531983101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638355223&rft_id=info:pmid/&rfr_iscdi=true