Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources
Retrievals of sulfur dioxide (SO2) from space‐based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scan...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2013-10, Vol.118 (19), p.11,399-11,418 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11,418 |
---|---|
container_issue | 19 |
container_start_page | 11,399 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 118 |
creator | Fioletov, V. E. McLinden, C. A. Krotkov, N. Yang, K. Loyola, D. G. Valks, P. Theys, N. Van Roozendael, M. Nowlan, C. R. Chance, K. Liu, X. Lee, C. Martin, R. V. |
description | Retrievals of sulfur dioxide (SO2) from space‐based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment‐2 (GOME‐2) satellite sensors, averaged over a period of several years, were used to identify locations with elevated SO2 values and estimate their emission levels. About 30 such locations, detectable by all three sensors and linked to volcanic and anthropogenic sources, were found after applying low and high spatial frequency filtration designed to reduce noise and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is in general agreement. However, its better spatial resolution makes it possible for OMI to detect smaller sources and with additional detail as compared to the other two instruments. Over some regions of China, SCIAMACHY and GOME‐2 data show mean SO2 values that are almost 1.5 times higher than those from OMI, but the suggested spatial filtration technique largely reconciles these differences.
Key Points
Available satellite SO2 data can be used to monitor large emission sources
SO2 data from different satellites agree when spatial filtration is applied
Instruments with higher spatial resolution can detect smaller emission sources |
doi_str_mv | 10.1002/jgrd.50826 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1638354696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3531979551</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3296-5aea8f5748f6efda56c29368f1c49b455d66a8729d2fc3664f6b2278f53ed5453</originalsourceid><addsrcrecordid>eNo9kN9PwjAQxxejiQR58S9oYnxjuLZr1z7CQMAwl4jGHy9N2VpSHAzbofLfO37Ivdzl7vO9u3w97xoGHRgE6G4xt3mHBAzRM6-BIOU-45yen-ro7dJrObcI6mABDknY8Bbd9bowmaxMuQKlBmkyboNpPO4m3Xj03gZylYNhmgx8BJysVFGYSoFpioBVlTXqWxYO6NKCXFUq-19SSDtXQC2Nc7uOKzc2U-7Ku9A1rlrH3PRe7gfP8cifpMNx3J34BiNOfSKVZJpEIdNU6VwSmiGOKdMwC_ksJCSnVLII8RzpDFMaajpDKKolWOUkJLjp3Rz2rm35tVGuEov6gVV9UkCKGSYh5bSmbo-UdJkstJWrzDixtmYp7VagiCOGIKw5eOB-TKG2pzkMxM5zsfNc7D0XD8On_r6qNf5BY1ylfk8aaT8FjXBExOvjUIyS3gfpwb6I8R_KS4NH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638354696</pqid></control><display><type>article</type><title>Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Fioletov, V. E. ; McLinden, C. A. ; Krotkov, N. ; Yang, K. ; Loyola, D. G. ; Valks, P. ; Theys, N. ; Van Roozendael, M. ; Nowlan, C. R. ; Chance, K. ; Liu, X. ; Lee, C. ; Martin, R. V.</creator><creatorcontrib>Fioletov, V. E. ; McLinden, C. A. ; Krotkov, N. ; Yang, K. ; Loyola, D. G. ; Valks, P. ; Theys, N. ; Van Roozendael, M. ; Nowlan, C. R. ; Chance, K. ; Liu, X. ; Lee, C. ; Martin, R. V.</creatorcontrib><description>Retrievals of sulfur dioxide (SO2) from space‐based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment‐2 (GOME‐2) satellite sensors, averaged over a period of several years, were used to identify locations with elevated SO2 values and estimate their emission levels. About 30 such locations, detectable by all three sensors and linked to volcanic and anthropogenic sources, were found after applying low and high spatial frequency filtration designed to reduce noise and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is in general agreement. However, its better spatial resolution makes it possible for OMI to detect smaller sources and with additional detail as compared to the other two instruments. Over some regions of China, SCIAMACHY and GOME‐2 data show mean SO2 values that are almost 1.5 times higher than those from OMI, but the suggested spatial filtration technique largely reconciles these differences.
Key Points
Available satellite SO2 data can be used to monitor large emission sources
SO2 data from different satellites agree when spatial filtration is applied
Instruments with higher spatial resolution can detect smaller emission sources</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/jgrd.50826</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Anthropogenic factors ; Developmental stages ; Earth, ocean, space ; Emission measurements ; emissions ; Exact sciences and technology ; External geophysics ; Filtration ; Geophysics ; Meteorological satellites ; Meteorology ; Monitoring instruments ; Noise reduction ; Ozone ; remote sensing ; Satellites ; Sensors ; Spectrometers ; Sulfur ; Sulfur dioxide</subject><ispartof>Journal of geophysical research. Atmospheres, 2013-10, Vol.118 (19), p.11,399-11,418</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgrd.50826$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgrd.50826$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27928211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fioletov, V. E.</creatorcontrib><creatorcontrib>McLinden, C. A.</creatorcontrib><creatorcontrib>Krotkov, N.</creatorcontrib><creatorcontrib>Yang, K.</creatorcontrib><creatorcontrib>Loyola, D. G.</creatorcontrib><creatorcontrib>Valks, P.</creatorcontrib><creatorcontrib>Theys, N.</creatorcontrib><creatorcontrib>Van Roozendael, M.</creatorcontrib><creatorcontrib>Nowlan, C. R.</creatorcontrib><creatorcontrib>Chance, K.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Lee, C.</creatorcontrib><creatorcontrib>Martin, R. V.</creatorcontrib><title>Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Retrievals of sulfur dioxide (SO2) from space‐based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment‐2 (GOME‐2) satellite sensors, averaged over a period of several years, were used to identify locations with elevated SO2 values and estimate their emission levels. About 30 such locations, detectable by all three sensors and linked to volcanic and anthropogenic sources, were found after applying low and high spatial frequency filtration designed to reduce noise and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is in general agreement. However, its better spatial resolution makes it possible for OMI to detect smaller sources and with additional detail as compared to the other two instruments. Over some regions of China, SCIAMACHY and GOME‐2 data show mean SO2 values that are almost 1.5 times higher than those from OMI, but the suggested spatial filtration technique largely reconciles these differences.
Key Points
Available satellite SO2 data can be used to monitor large emission sources
SO2 data from different satellites agree when spatial filtration is applied
Instruments with higher spatial resolution can detect smaller emission sources</description><subject>Anthropogenic factors</subject><subject>Developmental stages</subject><subject>Earth, ocean, space</subject><subject>Emission measurements</subject><subject>emissions</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Filtration</subject><subject>Geophysics</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Monitoring instruments</subject><subject>Noise reduction</subject><subject>Ozone</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spectrometers</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kN9PwjAQxxejiQR58S9oYnxjuLZr1z7CQMAwl4jGHy9N2VpSHAzbofLfO37Ivdzl7vO9u3w97xoGHRgE6G4xt3mHBAzRM6-BIOU-45yen-ro7dJrObcI6mABDknY8Bbd9bowmaxMuQKlBmkyboNpPO4m3Xj03gZylYNhmgx8BJysVFGYSoFpioBVlTXqWxYO6NKCXFUq-19SSDtXQC2Nc7uOKzc2U-7Ku9A1rlrH3PRe7gfP8cifpMNx3J34BiNOfSKVZJpEIdNU6VwSmiGOKdMwC_ksJCSnVLII8RzpDFMaajpDKKolWOUkJLjp3Rz2rm35tVGuEov6gVV9UkCKGSYh5bSmbo-UdJkstJWrzDixtmYp7VagiCOGIKw5eOB-TKG2pzkMxM5zsfNc7D0XD8On_r6qNf5BY1ylfk8aaT8FjXBExOvjUIyS3gfpwb6I8R_KS4NH</recordid><startdate>20131016</startdate><enddate>20131016</enddate><creator>Fioletov, V. E.</creator><creator>McLinden, C. A.</creator><creator>Krotkov, N.</creator><creator>Yang, K.</creator><creator>Loyola, D. G.</creator><creator>Valks, P.</creator><creator>Theys, N.</creator><creator>Van Roozendael, M.</creator><creator>Nowlan, C. R.</creator><creator>Chance, K.</creator><creator>Liu, X.</creator><creator>Lee, C.</creator><creator>Martin, R. V.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20131016</creationdate><title>Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources</title><author>Fioletov, V. E. ; McLinden, C. A. ; Krotkov, N. ; Yang, K. ; Loyola, D. G. ; Valks, P. ; Theys, N. ; Van Roozendael, M. ; Nowlan, C. R. ; Chance, K. ; Liu, X. ; Lee, C. ; Martin, R. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3296-5aea8f5748f6efda56c29368f1c49b455d66a8729d2fc3664f6b2278f53ed5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anthropogenic factors</topic><topic>Developmental stages</topic><topic>Earth, ocean, space</topic><topic>Emission measurements</topic><topic>emissions</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Filtration</topic><topic>Geophysics</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Monitoring instruments</topic><topic>Noise reduction</topic><topic>Ozone</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spectrometers</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fioletov, V. E.</creatorcontrib><creatorcontrib>McLinden, C. A.</creatorcontrib><creatorcontrib>Krotkov, N.</creatorcontrib><creatorcontrib>Yang, K.</creatorcontrib><creatorcontrib>Loyola, D. G.</creatorcontrib><creatorcontrib>Valks, P.</creatorcontrib><creatorcontrib>Theys, N.</creatorcontrib><creatorcontrib>Van Roozendael, M.</creatorcontrib><creatorcontrib>Nowlan, C. R.</creatorcontrib><creatorcontrib>Chance, K.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Lee, C.</creatorcontrib><creatorcontrib>Martin, R. V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fioletov, V. E.</au><au>McLinden, C. A.</au><au>Krotkov, N.</au><au>Yang, K.</au><au>Loyola, D. G.</au><au>Valks, P.</au><au>Theys, N.</au><au>Van Roozendael, M.</au><au>Nowlan, C. R.</au><au>Chance, K.</au><au>Liu, X.</au><au>Lee, C.</au><au>Martin, R. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-10-16</date><risdate>2013</risdate><volume>118</volume><issue>19</issue><spage>11,399</spage><epage>11,418</epage><pages>11,399-11,418</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Retrievals of sulfur dioxide (SO2) from space‐based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment‐2 (GOME‐2) satellite sensors, averaged over a period of several years, were used to identify locations with elevated SO2 values and estimate their emission levels. About 30 such locations, detectable by all three sensors and linked to volcanic and anthropogenic sources, were found after applying low and high spatial frequency filtration designed to reduce noise and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is in general agreement. However, its better spatial resolution makes it possible for OMI to detect smaller sources and with additional detail as compared to the other two instruments. Over some regions of China, SCIAMACHY and GOME‐2 data show mean SO2 values that are almost 1.5 times higher than those from OMI, but the suggested spatial filtration technique largely reconciles these differences.
Key Points
Available satellite SO2 data can be used to monitor large emission sources
SO2 data from different satellites agree when spatial filtration is applied
Instruments with higher spatial resolution can detect smaller emission sources</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgrd.50826</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2013-10, Vol.118 (19), p.11,399-11,418 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_1638354696 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Anthropogenic factors Developmental stages Earth, ocean, space Emission measurements emissions Exact sciences and technology External geophysics Filtration Geophysics Meteorological satellites Meteorology Monitoring instruments Noise reduction Ozone remote sensing Satellites Sensors Spectrometers Sulfur Sulfur dioxide |
title | Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20OMI,%20SCIAMACHY,%20and%20GOME-2%20satellite%20SO2%20retrievals%20for%20detection%20of%20large%20emission%20sources&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Fioletov,%20V.%20E.&rft.date=2013-10-16&rft.volume=118&rft.issue=19&rft.spage=11,399&rft.epage=11,418&rft.pages=11,399-11,418&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/jgrd.50826&rft_dat=%3Cproquest_pasca%3E3531979551%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638354696&rft_id=info:pmid/&rfr_iscdi=true |