Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study

Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long perio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2013-01, Vol.118 (1), p.17-28
Hauptverfasser: Enríquez-Rivera, O., Blanco-Cano, X., Russell, C. T., Jian, L. K., Luhmann, J. G., Simunac, K. D. C, Galvin, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 17
container_title Journal of geophysical research. Space physics
container_volume 118
creator Enríquez-Rivera, O.
Blanco-Cano, X.
Russell, C. T.
Jian, L. K.
Luhmann, J. G.
Simunac, K. D. C
Galvin, A. B.
description Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component. Key Points Mirror mode storms (MMSs) are common features observed inside SIRs We suggest that MMSs are generated locally via the mirror mode instability Alpha particle enhancements play an important role in the generation of MMSs
doi_str_mv 10.1029/2012JA018233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1638262302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3531809871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWGpv_oAFr0b3I9lsvJWi0VIVRRG8LJvdiW7bJHU3pfbfuxoVT85lPnjed5iJokOCTwim-SnFhE7HmAjK2E40oITncZ5guvtTM4H3o5H3cxxChBFJB5G-ts61Lq5bA8h3ras9so23X50DVYeuA6d0Z9sGOXgJySPVmDBH3SsgVZcWmg75dqkc2tjGnKExWtgGOquDx9psD6K9Si09jL7zMHq8OH-YXMaz2-JqMp7FmiWpiA0TqiwrolPNdZlV4Q6TZYJxCplSGQetDaUKAAhOKCOaJkYkXOeU53llSjaMjnrflWvf1uA7OW_XrgkrJeFMUE4ZpoE67intWu8dVHLlbK3cVhIsPz8p_34y4KzHN3YJ239ZOS3uxynGTARV3Kus7-D9V6XcQvKMZal8uinklKd3zxkupGAfIiuD0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638262302</pqid></control><display><type>article</type><title>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Enríquez-Rivera, O. ; Blanco-Cano, X. ; Russell, C. T. ; Jian, L. K. ; Luhmann, J. G. ; Simunac, K. D. C ; Galvin, A. B.</creator><creatorcontrib>Enríquez-Rivera, O. ; Blanco-Cano, X. ; Russell, C. T. ; Jian, L. K. ; Luhmann, J. G. ; Simunac, K. D. C ; Galvin, A. B.</creatorcontrib><description>Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component. Key Points Mirror mode storms (MMSs) are common features observed inside SIRs We suggest that MMSs are generated locally via the mirror mode instability Alpha particle enhancements play an important role in the generation of MMSs</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2012JA018233</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; kinetic instabilities ; Kinetics ; Magnetic fields ; magnetic holes ; mirror mode storms ; mirror mode trains ; mirror modes ; Solar physics ; Storms ; stream interaction regions ; Variance analysis</subject><ispartof>Journal of geophysical research. Space physics, 2013-01, Vol.118 (1), p.17-28</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</citedby><cites>FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JA018233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JA018233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Enríquez-Rivera, O.</creatorcontrib><creatorcontrib>Blanco-Cano, X.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Jian, L. K.</creatorcontrib><creatorcontrib>Luhmann, J. G.</creatorcontrib><creatorcontrib>Simunac, K. D. C</creatorcontrib><creatorcontrib>Galvin, A. B.</creatorcontrib><title>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component. Key Points Mirror mode storms (MMSs) are common features observed inside SIRs We suggest that MMSs are generated locally via the mirror mode instability Alpha particle enhancements play an important role in the generation of MMSs</description><subject>Anisotropy</subject><subject>kinetic instabilities</subject><subject>Kinetics</subject><subject>Magnetic fields</subject><subject>magnetic holes</subject><subject>mirror mode storms</subject><subject>mirror mode trains</subject><subject>mirror modes</subject><subject>Solar physics</subject><subject>Storms</subject><subject>stream interaction regions</subject><subject>Variance analysis</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhoMoWGpv_oAFr0b3I9lsvJWi0VIVRRG8LJvdiW7bJHU3pfbfuxoVT85lPnjed5iJokOCTwim-SnFhE7HmAjK2E40oITncZ5guvtTM4H3o5H3cxxChBFJB5G-ts61Lq5bA8h3ras9so23X50DVYeuA6d0Z9sGOXgJySPVmDBH3SsgVZcWmg75dqkc2tjGnKExWtgGOquDx9psD6K9Si09jL7zMHq8OH-YXMaz2-JqMp7FmiWpiA0TqiwrolPNdZlV4Q6TZYJxCplSGQetDaUKAAhOKCOaJkYkXOeU53llSjaMjnrflWvf1uA7OW_XrgkrJeFMUE4ZpoE67intWu8dVHLlbK3cVhIsPz8p_34y4KzHN3YJ239ZOS3uxynGTARV3Kus7-D9V6XcQvKMZal8uinklKd3zxkupGAfIiuD0w</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Enríquez-Rivera, O.</creator><creator>Blanco-Cano, X.</creator><creator>Russell, C. T.</creator><creator>Jian, L. K.</creator><creator>Luhmann, J. G.</creator><creator>Simunac, K. D. C</creator><creator>Galvin, A. B.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</title><author>Enríquez-Rivera, O. ; Blanco-Cano, X. ; Russell, C. T. ; Jian, L. K. ; Luhmann, J. G. ; Simunac, K. D. C ; Galvin, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>kinetic instabilities</topic><topic>Kinetics</topic><topic>Magnetic fields</topic><topic>magnetic holes</topic><topic>mirror mode storms</topic><topic>mirror mode trains</topic><topic>mirror modes</topic><topic>Solar physics</topic><topic>Storms</topic><topic>stream interaction regions</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enríquez-Rivera, O.</creatorcontrib><creatorcontrib>Blanco-Cano, X.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Jian, L. K.</creatorcontrib><creatorcontrib>Luhmann, J. G.</creatorcontrib><creatorcontrib>Simunac, K. D. C</creatorcontrib><creatorcontrib>Galvin, A. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enríquez-Rivera, O.</au><au>Blanco-Cano, X.</au><au>Russell, C. T.</au><au>Jian, L. K.</au><au>Luhmann, J. G.</au><au>Simunac, K. D. C</au><au>Galvin, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2013-01</date><risdate>2013</risdate><volume>118</volume><issue>1</issue><spage>17</spage><epage>28</epage><pages>17-28</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component. Key Points Mirror mode storms (MMSs) are common features observed inside SIRs We suggest that MMSs are generated locally via the mirror mode instability Alpha particle enhancements play an important role in the generation of MMSs</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JA018233</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2013-01, Vol.118 (1), p.17-28
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1638262302
source Wiley Free Content; Wiley Online Library All Journals
subjects Anisotropy
kinetic instabilities
Kinetics
Magnetic fields
magnetic holes
mirror mode storms
mirror mode trains
mirror modes
Solar physics
Storms
stream interaction regions
Variance analysis
title Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mirror-mode%20storms%20inside%20stream%20interaction%20regions%20and%20in%20the%20ambient%20solar%20wind:%20A%20kinetic%20study&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Enr%C3%ADquez-Rivera,%20O.&rft.date=2013-01&rft.volume=118&rft.issue=1&rft.spage=17&rft.epage=28&rft.pages=17-28&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2012JA018233&rft_dat=%3Cproquest_cross%3E3531809871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638262302&rft_id=info:pmid/&rfr_iscdi=true