Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study
Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long perio...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2013-01, Vol.118 (1), p.17-28 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Journal of geophysical research. Space physics |
container_volume | 118 |
creator | Enríquez-Rivera, O. Blanco-Cano, X. Russell, C. T. Jian, L. K. Luhmann, J. G. Simunac, K. D. C Galvin, A. B. |
description | Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component.
Key Points
Mirror mode storms (MMSs) are common features observed inside SIRs
We suggest that MMSs are generated locally via the mirror mode instability
Alpha particle enhancements play an important role in the generation of MMSs |
doi_str_mv | 10.1029/2012JA018233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1638262302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3531809871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWGpv_oAFr0b3I9lsvJWi0VIVRRG8LJvdiW7bJHU3pfbfuxoVT85lPnjed5iJokOCTwim-SnFhE7HmAjK2E40oITncZ5guvtTM4H3o5H3cxxChBFJB5G-ts61Lq5bA8h3ras9so23X50DVYeuA6d0Z9sGOXgJySPVmDBH3SsgVZcWmg75dqkc2tjGnKExWtgGOquDx9psD6K9Si09jL7zMHq8OH-YXMaz2-JqMp7FmiWpiA0TqiwrolPNdZlV4Q6TZYJxCplSGQetDaUKAAhOKCOaJkYkXOeU53llSjaMjnrflWvf1uA7OW_XrgkrJeFMUE4ZpoE67intWu8dVHLlbK3cVhIsPz8p_34y4KzHN3YJ239ZOS3uxynGTARV3Kus7-D9V6XcQvKMZal8uinklKd3zxkupGAfIiuD0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638262302</pqid></control><display><type>article</type><title>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Enríquez-Rivera, O. ; Blanco-Cano, X. ; Russell, C. T. ; Jian, L. K. ; Luhmann, J. G. ; Simunac, K. D. C ; Galvin, A. B.</creator><creatorcontrib>Enríquez-Rivera, O. ; Blanco-Cano, X. ; Russell, C. T. ; Jian, L. K. ; Luhmann, J. G. ; Simunac, K. D. C ; Galvin, A. B.</creatorcontrib><description>Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component.
Key Points
Mirror mode storms (MMSs) are common features observed inside SIRs
We suggest that MMSs are generated locally via the mirror mode instability
Alpha particle enhancements play an important role in the generation of MMSs</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2012JA018233</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; kinetic instabilities ; Kinetics ; Magnetic fields ; magnetic holes ; mirror mode storms ; mirror mode trains ; mirror modes ; Solar physics ; Storms ; stream interaction regions ; Variance analysis</subject><ispartof>Journal of geophysical research. Space physics, 2013-01, Vol.118 (1), p.17-28</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</citedby><cites>FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JA018233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JA018233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Enríquez-Rivera, O.</creatorcontrib><creatorcontrib>Blanco-Cano, X.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Jian, L. K.</creatorcontrib><creatorcontrib>Luhmann, J. G.</creatorcontrib><creatorcontrib>Simunac, K. D. C</creatorcontrib><creatorcontrib>Galvin, A. B.</creatorcontrib><title>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component.
Key Points
Mirror mode storms (MMSs) are common features observed inside SIRs
We suggest that MMSs are generated locally via the mirror mode instability
Alpha particle enhancements play an important role in the generation of MMSs</description><subject>Anisotropy</subject><subject>kinetic instabilities</subject><subject>Kinetics</subject><subject>Magnetic fields</subject><subject>magnetic holes</subject><subject>mirror mode storms</subject><subject>mirror mode trains</subject><subject>mirror modes</subject><subject>Solar physics</subject><subject>Storms</subject><subject>stream interaction regions</subject><subject>Variance analysis</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhoMoWGpv_oAFr0b3I9lsvJWi0VIVRRG8LJvdiW7bJHU3pfbfuxoVT85lPnjed5iJokOCTwim-SnFhE7HmAjK2E40oITncZ5guvtTM4H3o5H3cxxChBFJB5G-ts61Lq5bA8h3ras9so23X50DVYeuA6d0Z9sGOXgJySPVmDBH3SsgVZcWmg75dqkc2tjGnKExWtgGOquDx9psD6K9Si09jL7zMHq8OH-YXMaz2-JqMp7FmiWpiA0TqiwrolPNdZlV4Q6TZYJxCplSGQetDaUKAAhOKCOaJkYkXOeU53llSjaMjnrflWvf1uA7OW_XrgkrJeFMUE4ZpoE67intWu8dVHLlbK3cVhIsPz8p_34y4KzHN3YJ239ZOS3uxynGTARV3Kus7-D9V6XcQvKMZal8uinklKd3zxkupGAfIiuD0w</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Enríquez-Rivera, O.</creator><creator>Blanco-Cano, X.</creator><creator>Russell, C. T.</creator><creator>Jian, L. K.</creator><creator>Luhmann, J. G.</creator><creator>Simunac, K. D. C</creator><creator>Galvin, A. B.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</title><author>Enríquez-Rivera, O. ; Blanco-Cano, X. ; Russell, C. T. ; Jian, L. K. ; Luhmann, J. G. ; Simunac, K. D. C ; Galvin, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-d38abbf1c5c6cb7f233d778362e7aa76eccd22aeee104231c24d846c92699fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>kinetic instabilities</topic><topic>Kinetics</topic><topic>Magnetic fields</topic><topic>magnetic holes</topic><topic>mirror mode storms</topic><topic>mirror mode trains</topic><topic>mirror modes</topic><topic>Solar physics</topic><topic>Storms</topic><topic>stream interaction regions</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enríquez-Rivera, O.</creatorcontrib><creatorcontrib>Blanco-Cano, X.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Jian, L. K.</creatorcontrib><creatorcontrib>Luhmann, J. G.</creatorcontrib><creatorcontrib>Simunac, K. D. C</creatorcontrib><creatorcontrib>Galvin, A. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enríquez-Rivera, O.</au><au>Blanco-Cano, X.</au><au>Russell, C. T.</au><au>Jian, L. K.</au><au>Luhmann, J. G.</au><au>Simunac, K. D. C</au><au>Galvin, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2013-01</date><risdate>2013</risdate><volume>118</volume><issue>1</issue><spage>17</spage><epage>28</epage><pages>17-28</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Mirror‐mode structures have been found in the solar wind at various heliocentric distances with different missions. Recently, STEREO has observed mirror‐mode waves present as trains of holes and also as humps in the magnetic field magnitude. In some cases, mirror‐mode trains last for very long periods of time and have been called “mirror‐mode storms”. We present case studies of mirror‐mode storms observed in the solar wind using STEREO data in three different locations: in the downstream region of the forward shock of a stream interaction region, inside a stream interaction region far from the forward shock, and also in the ambient solar wind. To make a formal identification of the mirror mode, we determine wave characteristics using minimum variance analysis. Finally, we perform a kinetic dispersion analysis and discuss the possible origin of mirror‐mode structures evaluating curves of growth for different regimes of proton temperature anisotropies in a plasma with a He component.
Key Points
Mirror mode storms (MMSs) are common features observed inside SIRs
We suggest that MMSs are generated locally via the mirror mode instability
Alpha particle enhancements play an important role in the generation of MMSs</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JA018233</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2013-01, Vol.118 (1), p.17-28 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_1638262302 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Anisotropy kinetic instabilities Kinetics Magnetic fields magnetic holes mirror mode storms mirror mode trains mirror modes Solar physics Storms stream interaction regions Variance analysis |
title | Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mirror-mode%20storms%20inside%20stream%20interaction%20regions%20and%20in%20the%20ambient%20solar%20wind:%20A%20kinetic%20study&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Enr%C3%ADquez-Rivera,%20O.&rft.date=2013-01&rft.volume=118&rft.issue=1&rft.spage=17&rft.epage=28&rft.pages=17-28&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2012JA018233&rft_dat=%3Cproquest_cross%3E3531809871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638262302&rft_id=info:pmid/&rfr_iscdi=true |