On the Existence of Solution of Some Problems for Nonlinear Loaded Parabolic Equations with Cauchy Data
Two problems are considered in this article. First problem is the Cauchy problem for a two-dimensional loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient...
Gespeichert in:
Veröffentlicht in: | Journal of Siberian Federal University. Mathematics & Physics 2014-01, Vol.7 (2), p.173 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | Journal of Siberian Federal University. Mathematics & Physics |
container_volume | 7 |
creator | Frolenkov, Igor V Darzhaa, Maria A |
description | Two problems are considered in this article. First problem is the Cauchy problem for a two-dimensional loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient conditions of the existence of solutions of these problems in classes of smooth bounded functions are presented in this article. The method of weak approximation is used, for the purpose of obtaining the proof. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1635298646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3524156391</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-c6c9f7e0665e78ee3b08706f1a3e5857c8389ada35a8011915a789784e029413</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQdRsNT-hwuuAzO5yTyWEusDii3YfblJbkxKmmkzE9R_b6VdnbP5zse5EbMUFSZapumtmCnnTKLQmXuxCGEvpUydzhDNTHytB4gtw_KnC5GHisE38On7KXZ-uPQDw2b0Zc-HAI0f4cMPfTcwjbDyVHMNGxqp9H1XwfI00T8Y4LuLLRQ0Ve0vPFOkB3HXUB94cc252L4st8Vbslq_vhdPq-SoLMak0pVrDEutczaWGUtpjdSNIuTc5qayaB3VhDlZqZRTORnrjM34fClTOBePl9nj6E8Th7jb-2kczsad0pinzupM4x9FtFNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635298646</pqid></control><display><type>article</type><title>On the Existence of Solution of Some Problems for Nonlinear Loaded Parabolic Equations with Cauchy Data</title><source>Math-Net.Ru (free access)</source><creator>Frolenkov, Igor V ; Darzhaa, Maria A</creator><creatorcontrib>Frolenkov, Igor V ; Darzhaa, Maria A</creatorcontrib><description>Two problems are considered in this article. First problem is the Cauchy problem for a two-dimensional loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient conditions of the existence of solutions of these problems in classes of smooth bounded functions are presented in this article. The method of weak approximation is used, for the purpose of obtaining the proof.</description><identifier>ISSN: 1997-1397</identifier><identifier>EISSN: 2313-6022</identifier><language>eng</language><publisher>Krasnoyarsk: Siberian Federal University</publisher><ispartof>Journal of Siberian Federal University. Mathematics & Physics, 2014-01, Vol.7 (2), p.173</ispartof><rights>Copyright Siberian Federal University 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Frolenkov, Igor V</creatorcontrib><creatorcontrib>Darzhaa, Maria A</creatorcontrib><title>On the Existence of Solution of Some Problems for Nonlinear Loaded Parabolic Equations with Cauchy Data</title><title>Journal of Siberian Federal University. Mathematics & Physics</title><description>Two problems are considered in this article. First problem is the Cauchy problem for a two-dimensional loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient conditions of the existence of solutions of these problems in classes of smooth bounded functions are presented in this article. The method of weak approximation is used, for the purpose of obtaining the proof.</description><issn>1997-1397</issn><issn>2313-6022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotj0tLw0AUhQdRsNT-hwuuAzO5yTyWEusDii3YfblJbkxKmmkzE9R_b6VdnbP5zse5EbMUFSZapumtmCnnTKLQmXuxCGEvpUydzhDNTHytB4gtw_KnC5GHisE38On7KXZ-uPQDw2b0Zc-HAI0f4cMPfTcwjbDyVHMNGxqp9H1XwfI00T8Y4LuLLRQ0Ve0vPFOkB3HXUB94cc252L4st8Vbslq_vhdPq-SoLMak0pVrDEutczaWGUtpjdSNIuTc5qayaB3VhDlZqZRTORnrjM34fClTOBePl9nj6E8Th7jb-2kczsad0pinzupM4x9FtFNA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Frolenkov, Igor V</creator><creator>Darzhaa, Maria A</creator><general>Siberian Federal University</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>On the Existence of Solution of Some Problems for Nonlinear Loaded Parabolic Equations with Cauchy Data</title><author>Frolenkov, Igor V ; Darzhaa, Maria A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-c6c9f7e0665e78ee3b08706f1a3e5857c8389ada35a8011915a789784e029413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frolenkov, Igor V</creatorcontrib><creatorcontrib>Darzhaa, Maria A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of Siberian Federal University. Mathematics & Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frolenkov, Igor V</au><au>Darzhaa, Maria A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Existence of Solution of Some Problems for Nonlinear Loaded Parabolic Equations with Cauchy Data</atitle><jtitle>Journal of Siberian Federal University. Mathematics & Physics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>7</volume><issue>2</issue><spage>173</spage><pages>173-</pages><issn>1997-1397</issn><eissn>2313-6022</eissn><abstract>Two problems are considered in this article. First problem is the Cauchy problem for a two-dimensional loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient conditions of the existence of solutions of these problems in classes of smooth bounded functions are presented in this article. The method of weak approximation is used, for the purpose of obtaining the proof.</abstract><cop>Krasnoyarsk</cop><pub>Siberian Federal University</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1997-1397 |
ispartof | Journal of Siberian Federal University. Mathematics & Physics, 2014-01, Vol.7 (2), p.173 |
issn | 1997-1397 2313-6022 |
language | eng |
recordid | cdi_proquest_journals_1635298646 |
source | Math-Net.Ru (free access) |
title | On the Existence of Solution of Some Problems for Nonlinear Loaded Parabolic Equations with Cauchy Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Existence%20of%20Solution%20of%20Some%20Problems%20for%20Nonlinear%20Loaded%20Parabolic%20Equations%20with%20Cauchy%20Data&rft.jtitle=Journal%20of%20Siberian%20Federal%20University.%20Mathematics%20&%20Physics&rft.au=Frolenkov,%20Igor%20V&rft.date=2014-01-01&rft.volume=7&rft.issue=2&rft.spage=173&rft.pages=173-&rft.issn=1997-1397&rft.eissn=2313-6022&rft_id=info:doi/&rft_dat=%3Cproquest%3E3524156391%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635298646&rft_id=info:pmid/&rfr_iscdi=true |