The hamiltonicity of generalized honeycomb torus networks
•Previous proofs of hamiltonicity of GHT(m,n,d) are not sufficient when m is odd.•We propose construction procedures of hamiltonian cycles in GHT(m,n,d) with odd m.•GHT(m,n,d) is isomorphic to GHT(m,n,n−d). Yang et al. (2004) [8] proved that the generalized honeycomb torus GHT(m,n,d) is hamiltonian,...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2015-02, Vol.115 (2), p.104-111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 2 |
container_start_page | 104 |
container_title | Information processing letters |
container_volume | 115 |
creator | Dong, Qiang Zhao, Qian An, Yahui |
description | •Previous proofs of hamiltonicity of GHT(m,n,d) are not sufficient when m is odd.•We propose construction procedures of hamiltonian cycles in GHT(m,n,d) with odd m.•GHT(m,n,d) is isomorphic to GHT(m,n,n−d).
Yang et al. (2004) [8] proved that the generalized honeycomb torus GHT(m,n,d) is hamiltonian, but their proofs are not sufficient when the width m is odd. In this paper, we propose a series of procedures for constructing hamiltonian cycles in generalized honeycomb tori, which apply to every instance of GHT(m,n,d) with odd width m. |
doi_str_mv | 10.1016/j.ipl.2014.07.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1628654052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019014001495</els_id><sourcerecordid>3510817491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-ab1ab555d142e690dd66785d1adaf369b14a51c9aa269c73c5da8b247f75a5943</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zaZM0eJLFL1jwsp5DmqRuardZk66y_nq7rGdPw8D7vDM8hFwjFAjIb7vCb_uCAlYFiAIQT8gMa0FzjihPyQyAQg4o4ZxcpNQBAK9KMSNytXbZWm98P4bBGz_us9Bm725wUff-x9lsHQa3N2HTZGOIu5QNbvwO8SNdkrNW98ld_c05eXt8WC2e8-Xr08vifpmbUrIx1w3qhjFmsaKOS7CWc1FPq7a6LblssNIMjdSacmlEaZjVdUMr0QqmmazKObk59m5j-Ny5NKou7OIwnVTIac1ZBYxOKTymTAwpRdeqbfQbHfcKQR0MqU5NhtTBkAKhJkMTc3dk3PT-l3dRJePdYJz10ZlR2eD_oX8BBdJuLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628654052</pqid></control><display><type>article</type><title>The hamiltonicity of generalized honeycomb torus networks</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dong, Qiang ; Zhao, Qian ; An, Yahui</creator><creatorcontrib>Dong, Qiang ; Zhao, Qian ; An, Yahui</creatorcontrib><description>•Previous proofs of hamiltonicity of GHT(m,n,d) are not sufficient when m is odd.•We propose construction procedures of hamiltonian cycles in GHT(m,n,d) with odd m.•GHT(m,n,d) is isomorphic to GHT(m,n,n−d).
Yang et al. (2004) [8] proved that the generalized honeycomb torus GHT(m,n,d) is hamiltonian, but their proofs are not sufficient when the width m is odd. In this paper, we propose a series of procedures for constructing hamiltonian cycles in generalized honeycomb tori, which apply to every instance of GHT(m,n,d) with odd width m.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2014.07.011</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer networks ; Generalized honeycomb torus ; Hamiltonian cycle ; Interconnection network ; Mathematical analysis ; Parallel computing ; Studies</subject><ispartof>Information processing letters, 2015-02, Vol.115 (2), p.104-111</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-ab1ab555d142e690dd66785d1adaf369b14a51c9aa269c73c5da8b247f75a5943</citedby><cites>FETCH-LOGICAL-c395t-ab1ab555d142e690dd66785d1adaf369b14a51c9aa269c73c5da8b247f75a5943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2014.07.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dong, Qiang</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>An, Yahui</creatorcontrib><title>The hamiltonicity of generalized honeycomb torus networks</title><title>Information processing letters</title><description>•Previous proofs of hamiltonicity of GHT(m,n,d) are not sufficient when m is odd.•We propose construction procedures of hamiltonian cycles in GHT(m,n,d) with odd m.•GHT(m,n,d) is isomorphic to GHT(m,n,n−d).
Yang et al. (2004) [8] proved that the generalized honeycomb torus GHT(m,n,d) is hamiltonian, but their proofs are not sufficient when the width m is odd. In this paper, we propose a series of procedures for constructing hamiltonian cycles in generalized honeycomb tori, which apply to every instance of GHT(m,n,d) with odd width m.</description><subject>Computer networks</subject><subject>Generalized honeycomb torus</subject><subject>Hamiltonian cycle</subject><subject>Interconnection network</subject><subject>Mathematical analysis</subject><subject>Parallel computing</subject><subject>Studies</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zaZM0eJLFL1jwsp5DmqRuardZk66y_nq7rGdPw8D7vDM8hFwjFAjIb7vCb_uCAlYFiAIQT8gMa0FzjihPyQyAQg4o4ZxcpNQBAK9KMSNytXbZWm98P4bBGz_us9Bm725wUff-x9lsHQa3N2HTZGOIu5QNbvwO8SNdkrNW98ld_c05eXt8WC2e8-Xr08vifpmbUrIx1w3qhjFmsaKOS7CWc1FPq7a6LblssNIMjdSacmlEaZjVdUMr0QqmmazKObk59m5j-Ny5NKou7OIwnVTIac1ZBYxOKTymTAwpRdeqbfQbHfcKQR0MqU5NhtTBkAKhJkMTc3dk3PT-l3dRJePdYJz10ZlR2eD_oX8BBdJuLQ</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Dong, Qiang</creator><creator>Zhao, Qian</creator><creator>An, Yahui</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>The hamiltonicity of generalized honeycomb torus networks</title><author>Dong, Qiang ; Zhao, Qian ; An, Yahui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-ab1ab555d142e690dd66785d1adaf369b14a51c9aa269c73c5da8b247f75a5943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer networks</topic><topic>Generalized honeycomb torus</topic><topic>Hamiltonian cycle</topic><topic>Interconnection network</topic><topic>Mathematical analysis</topic><topic>Parallel computing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Qiang</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>An, Yahui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Qiang</au><au>Zhao, Qian</au><au>An, Yahui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hamiltonicity of generalized honeycomb torus networks</atitle><jtitle>Information processing letters</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>115</volume><issue>2</issue><spage>104</spage><epage>111</epage><pages>104-111</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>•Previous proofs of hamiltonicity of GHT(m,n,d) are not sufficient when m is odd.•We propose construction procedures of hamiltonian cycles in GHT(m,n,d) with odd m.•GHT(m,n,d) is isomorphic to GHT(m,n,n−d).
Yang et al. (2004) [8] proved that the generalized honeycomb torus GHT(m,n,d) is hamiltonian, but their proofs are not sufficient when the width m is odd. In this paper, we propose a series of procedures for constructing hamiltonian cycles in generalized honeycomb tori, which apply to every instance of GHT(m,n,d) with odd width m.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2014.07.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2015-02, Vol.115 (2), p.104-111 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_journals_1628654052 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computer networks Generalized honeycomb torus Hamiltonian cycle Interconnection network Mathematical analysis Parallel computing Studies |
title | The hamiltonicity of generalized honeycomb torus networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hamiltonicity%20of%20generalized%20honeycomb%20torus%20networks&rft.jtitle=Information%20processing%20letters&rft.au=Dong,%20Qiang&rft.date=2015-02-01&rft.volume=115&rft.issue=2&rft.spage=104&rft.epage=111&rft.pages=104-111&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2014.07.011&rft_dat=%3Cproquest_cross%3E3510817491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1628654052&rft_id=info:pmid/&rft_els_id=S0020019014001495&rfr_iscdi=true |