Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling

We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to Mineralogy and Petrology 2014-12, Vol.168 (6), p.1, Article 1090
Hauptverfasser: Pourteau, Amaury, Bousquet, Romain, Vidal, Olivier, Plunder, Alexis, Duesterhoeft, Erik, Candan, Osman, Oberhänsli, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title Contributions to Mineralogy and Petrology
container_volume 168
creator Pourteau, Amaury
Bousquet, Romain
Vidal, Olivier
Plunder, Alexis
Duesterhoeft, Erik
Candan, Osman
Oberhänsli, Roland
description We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg  = 0.27–0.73) and chloritoid (overall X Mg  = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve P – T conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The P – T paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.
doi_str_mv 10.1007/s00410-014-1090-7
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1627637305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A407108759</galeid><sourcerecordid>A407108759</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEEkvhAbhZ4oZIO06cOD6uKkqRtuICZ8txxokrJ15sb1FvfQfekCfBqyBapEWW_G9-33jG-oriLYVzCsAvIgCjUAJlJQUBJX9WbCirqxJEy58XG4Ac5UKIl8WrGG8hnzvRbIpwc3DJxqRGJGPwP9JEvCFX-Ovh582YJ63CfvLOJiRqGZ4GJueDTd4OH4gJfibGohsI3tkBF40keZImDLMf7hc1W03yDp2zy_i6eGGUi_jmz3pWfLv6-PXyutx9-fT5crsrFeMilQ3FhivW66bPtbd91fVD2w0A2DZc61oxpgSregqq6U09GOigY7QyoNsGhajPivdr3kk5uQ92VuFeemXl9XYn7RIPEuqW0baCO5rhdyu8D_77AWOSt_4QllyfzARva15D80iNymHOYXwKSs82arllwCl0vDk-XJ6gRlwwKOcXNDZf_8Ofn-DzGDB_3EkBXQU6-BgDmr_tUZBHO8jVDjLbQR7tIHnWVKsmZnYZMTxp8L-i3-W4uTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627637305</pqid></control><display><type>article</type><title>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pourteau, Amaury ; Bousquet, Romain ; Vidal, Olivier ; Plunder, Alexis ; Duesterhoeft, Erik ; Candan, Osman ; Oberhänsli, Roland</creator><creatorcontrib>Pourteau, Amaury ; Bousquet, Romain ; Vidal, Olivier ; Plunder, Alexis ; Duesterhoeft, Erik ; Candan, Osman ; Oberhänsli, Roland</creatorcontrib><description>We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg  = 0.27–0.73) and chloritoid (overall X Mg  = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve P – T conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The P – T paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-014-1090-7</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Clay ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Geochemistry ; Geology ; Mathematical models ; Metamorphism ; Metamorphism (Geology) ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Phase diagrams ; Rocks ; Rocks, Metamorphic ; Rocks, Sedimentary ; Sciences of the Universe ; Thermodynamics</subject><ispartof>Contributions to Mineralogy and Petrology, 2014-12, Vol.168 (6), p.1, Article 1090</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</citedby><cites>FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</cites><orcidid>0000-0002-3567-8490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-014-1090-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-014-1090-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03641620$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pourteau, Amaury</creatorcontrib><creatorcontrib>Bousquet, Romain</creatorcontrib><creatorcontrib>Vidal, Olivier</creatorcontrib><creatorcontrib>Plunder, Alexis</creatorcontrib><creatorcontrib>Duesterhoeft, Erik</creatorcontrib><creatorcontrib>Candan, Osman</creatorcontrib><creatorcontrib>Oberhänsli, Roland</creatorcontrib><title>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</title><title>Contributions to Mineralogy and Petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg  = 0.27–0.73) and chloritoid (overall X Mg  = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve P – T conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The P – T paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.</description><subject>Clay</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Mathematical models</subject><subject>Metamorphism</subject><subject>Metamorphism (Geology)</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Phase diagrams</subject><subject>Rocks</subject><subject>Rocks, Metamorphic</subject><subject>Rocks, Sedimentary</subject><subject>Sciences of the Universe</subject><subject>Thermodynamics</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks9u1DAQxiMEEkvhAbhZ4oZIO06cOD6uKkqRtuICZ8txxokrJ15sb1FvfQfekCfBqyBapEWW_G9-33jG-oriLYVzCsAvIgCjUAJlJQUBJX9WbCirqxJEy58XG4Ac5UKIl8WrGG8hnzvRbIpwc3DJxqRGJGPwP9JEvCFX-Ovh582YJ63CfvLOJiRqGZ4GJueDTd4OH4gJfibGohsI3tkBF40keZImDLMf7hc1W03yDp2zy_i6eGGUi_jmz3pWfLv6-PXyutx9-fT5crsrFeMilQ3FhivW66bPtbd91fVD2w0A2DZc61oxpgSregqq6U09GOigY7QyoNsGhajPivdr3kk5uQ92VuFeemXl9XYn7RIPEuqW0baCO5rhdyu8D_77AWOSt_4QllyfzARva15D80iNymHOYXwKSs82arllwCl0vDk-XJ6gRlwwKOcXNDZf_8Ofn-DzGDB_3EkBXQU6-BgDmr_tUZBHO8jVDjLbQR7tIHnWVKsmZnYZMTxp8L-i3-W4uTc</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Pourteau, Amaury</creator><creator>Bousquet, Romain</creator><creator>Vidal, Olivier</creator><creator>Plunder, Alexis</creator><creator>Duesterhoeft, Erik</creator><creator>Candan, Osman</creator><creator>Oberhänsli, Roland</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3567-8490</orcidid></search><sort><creationdate>20141201</creationdate><title>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</title><author>Pourteau, Amaury ; Bousquet, Romain ; Vidal, Olivier ; Plunder, Alexis ; Duesterhoeft, Erik ; Candan, Osman ; Oberhänsli, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clay</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Mathematical models</topic><topic>Metamorphism</topic><topic>Metamorphism (Geology)</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Phase diagrams</topic><topic>Rocks</topic><topic>Rocks, Metamorphic</topic><topic>Rocks, Sedimentary</topic><topic>Sciences of the Universe</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourteau, Amaury</creatorcontrib><creatorcontrib>Bousquet, Romain</creatorcontrib><creatorcontrib>Vidal, Olivier</creatorcontrib><creatorcontrib>Plunder, Alexis</creatorcontrib><creatorcontrib>Duesterhoeft, Erik</creatorcontrib><creatorcontrib>Candan, Osman</creatorcontrib><creatorcontrib>Oberhänsli, Roland</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Contributions to Mineralogy and Petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourteau, Amaury</au><au>Bousquet, Romain</au><au>Vidal, Olivier</au><au>Plunder, Alexis</au><au>Duesterhoeft, Erik</au><au>Candan, Osman</au><au>Oberhänsli, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</atitle><jtitle>Contributions to Mineralogy and Petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>168</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>1090</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg  = 0.27–0.73) and chloritoid (overall X Mg  = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve P – T conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The P – T paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-014-1090-7</doi><orcidid>https://orcid.org/0000-0002-3567-8490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to Mineralogy and Petrology, 2014-12, Vol.168 (6), p.1, Article 1090
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_1627637305
source SpringerLink Journals - AutoHoldings
subjects Clay
Earth and Environmental Science
Earth Sciences
Fractionation
Geochemistry
Geology
Mathematical models
Metamorphism
Metamorphism (Geology)
Mineral Resources
Mineralogy
Original Paper
Petrology
Phase diagrams
Rocks
Rocks, Metamorphic
Rocks, Sedimentary
Sciences of the Universe
Thermodynamics
title Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20growth%20of%20Fe%E2%80%93Mg%E2%80%93carpholite%20and%20Fe%E2%80%93Mg%E2%80%93chloritoid,%20from%20field%20evidence%20to%20thermodynamic%20modelling&rft.jtitle=Contributions%20to%20Mineralogy%20and%20Petrology&rft.au=Pourteau,%20Amaury&rft.date=2014-12-01&rft.volume=168&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=1090&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-014-1090-7&rft_dat=%3Cgale_hal_p%3EA407108759%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627637305&rft_id=info:pmid/&rft_galeid=A407108759&rfr_iscdi=true