Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling
We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We...
Gespeichert in:
Veröffentlicht in: | Contributions to Mineralogy and Petrology 2014-12, Vol.168 (6), p.1, Article 1090 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Contributions to Mineralogy and Petrology |
container_volume | 168 |
creator | Pourteau, Amaury Bousquet, Romain Vidal, Olivier Plunder, Alexis Duesterhoeft, Erik Candan, Osman Oberhänsli, Roland |
description | We provide new insights into the prograde evolution of H
P
/L
T
metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall
X
Mg
= 0.27–0.73) and chloritoid (overall
X
Mg
= 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve
P
–
T
conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The
P
–
T
paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages. |
doi_str_mv | 10.1007/s00410-014-1090-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1627637305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A407108759</galeid><sourcerecordid>A407108759</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEEkvhAbhZ4oZIO06cOD6uKkqRtuICZ8txxokrJ15sb1FvfQfekCfBqyBapEWW_G9-33jG-oriLYVzCsAvIgCjUAJlJQUBJX9WbCirqxJEy58XG4Ac5UKIl8WrGG8hnzvRbIpwc3DJxqRGJGPwP9JEvCFX-Ovh582YJ63CfvLOJiRqGZ4GJueDTd4OH4gJfibGohsI3tkBF40keZImDLMf7hc1W03yDp2zy_i6eGGUi_jmz3pWfLv6-PXyutx9-fT5crsrFeMilQ3FhivW66bPtbd91fVD2w0A2DZc61oxpgSregqq6U09GOigY7QyoNsGhajPivdr3kk5uQ92VuFeemXl9XYn7RIPEuqW0baCO5rhdyu8D_77AWOSt_4QllyfzARva15D80iNymHOYXwKSs82arllwCl0vDk-XJ6gRlwwKOcXNDZf_8Ofn-DzGDB_3EkBXQU6-BgDmr_tUZBHO8jVDjLbQR7tIHnWVKsmZnYZMTxp8L-i3-W4uTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627637305</pqid></control><display><type>article</type><title>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pourteau, Amaury ; Bousquet, Romain ; Vidal, Olivier ; Plunder, Alexis ; Duesterhoeft, Erik ; Candan, Osman ; Oberhänsli, Roland</creator><creatorcontrib>Pourteau, Amaury ; Bousquet, Romain ; Vidal, Olivier ; Plunder, Alexis ; Duesterhoeft, Erik ; Candan, Osman ; Oberhänsli, Roland</creatorcontrib><description>We provide new insights into the prograde evolution of H
P
/L
T
metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall
X
Mg
= 0.27–0.73) and chloritoid (overall
X
Mg
= 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve
P
–
T
conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The
P
–
T
paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-014-1090-7</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Clay ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Geochemistry ; Geology ; Mathematical models ; Metamorphism ; Metamorphism (Geology) ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Phase diagrams ; Rocks ; Rocks, Metamorphic ; Rocks, Sedimentary ; Sciences of the Universe ; Thermodynamics</subject><ispartof>Contributions to Mineralogy and Petrology, 2014-12, Vol.168 (6), p.1, Article 1090</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</citedby><cites>FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</cites><orcidid>0000-0002-3567-8490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-014-1090-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-014-1090-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03641620$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pourteau, Amaury</creatorcontrib><creatorcontrib>Bousquet, Romain</creatorcontrib><creatorcontrib>Vidal, Olivier</creatorcontrib><creatorcontrib>Plunder, Alexis</creatorcontrib><creatorcontrib>Duesterhoeft, Erik</creatorcontrib><creatorcontrib>Candan, Osman</creatorcontrib><creatorcontrib>Oberhänsli, Roland</creatorcontrib><title>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</title><title>Contributions to Mineralogy and Petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>We provide new insights into the prograde evolution of H
P
/L
T
metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall
X
Mg
= 0.27–0.73) and chloritoid (overall
X
Mg
= 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve
P
–
T
conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The
P
–
T
paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.</description><subject>Clay</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Mathematical models</subject><subject>Metamorphism</subject><subject>Metamorphism (Geology)</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Phase diagrams</subject><subject>Rocks</subject><subject>Rocks, Metamorphic</subject><subject>Rocks, Sedimentary</subject><subject>Sciences of the Universe</subject><subject>Thermodynamics</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks9u1DAQxiMEEkvhAbhZ4oZIO06cOD6uKkqRtuICZ8txxokrJ15sb1FvfQfekCfBqyBapEWW_G9-33jG-oriLYVzCsAvIgCjUAJlJQUBJX9WbCirqxJEy58XG4Ac5UKIl8WrGG8hnzvRbIpwc3DJxqRGJGPwP9JEvCFX-Ovh582YJ63CfvLOJiRqGZ4GJueDTd4OH4gJfibGohsI3tkBF40keZImDLMf7hc1W03yDp2zy_i6eGGUi_jmz3pWfLv6-PXyutx9-fT5crsrFeMilQ3FhivW66bPtbd91fVD2w0A2DZc61oxpgSregqq6U09GOigY7QyoNsGhajPivdr3kk5uQ92VuFeemXl9XYn7RIPEuqW0baCO5rhdyu8D_77AWOSt_4QllyfzARva15D80iNymHOYXwKSs82arllwCl0vDk-XJ6gRlwwKOcXNDZf_8Ofn-DzGDB_3EkBXQU6-BgDmr_tUZBHO8jVDjLbQR7tIHnWVKsmZnYZMTxp8L-i3-W4uTc</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Pourteau, Amaury</creator><creator>Bousquet, Romain</creator><creator>Vidal, Olivier</creator><creator>Plunder, Alexis</creator><creator>Duesterhoeft, Erik</creator><creator>Candan, Osman</creator><creator>Oberhänsli, Roland</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3567-8490</orcidid></search><sort><creationdate>20141201</creationdate><title>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</title><author>Pourteau, Amaury ; Bousquet, Romain ; Vidal, Olivier ; Plunder, Alexis ; Duesterhoeft, Erik ; Candan, Osman ; Oberhänsli, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-51e57a4bc5b0106b28bd68d00e657cc3a44a942b10a5bf3df0808412f0c65e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clay</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Mathematical models</topic><topic>Metamorphism</topic><topic>Metamorphism (Geology)</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Phase diagrams</topic><topic>Rocks</topic><topic>Rocks, Metamorphic</topic><topic>Rocks, Sedimentary</topic><topic>Sciences of the Universe</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourteau, Amaury</creatorcontrib><creatorcontrib>Bousquet, Romain</creatorcontrib><creatorcontrib>Vidal, Olivier</creatorcontrib><creatorcontrib>Plunder, Alexis</creatorcontrib><creatorcontrib>Duesterhoeft, Erik</creatorcontrib><creatorcontrib>Candan, Osman</creatorcontrib><creatorcontrib>Oberhänsli, Roland</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Contributions to Mineralogy and Petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourteau, Amaury</au><au>Bousquet, Romain</au><au>Vidal, Olivier</au><au>Plunder, Alexis</au><au>Duesterhoeft, Erik</au><au>Candan, Osman</au><au>Oberhänsli, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling</atitle><jtitle>Contributions to Mineralogy and Petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>168</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>1090</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>We provide new insights into the prograde evolution of H
P
/L
T
metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall
X
Mg
= 0.27–0.73) and chloritoid (overall
X
Mg
= 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve
P
–
T
conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The
P
–
T
paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-014-1090-7</doi><orcidid>https://orcid.org/0000-0002-3567-8490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to Mineralogy and Petrology, 2014-12, Vol.168 (6), p.1, Article 1090 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_journals_1627637305 |
source | SpringerLink Journals - AutoHoldings |
subjects | Clay Earth and Environmental Science Earth Sciences Fractionation Geochemistry Geology Mathematical models Metamorphism Metamorphism (Geology) Mineral Resources Mineralogy Original Paper Petrology Phase diagrams Rocks Rocks, Metamorphic Rocks, Sedimentary Sciences of the Universe Thermodynamics |
title | Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20growth%20of%20Fe%E2%80%93Mg%E2%80%93carpholite%20and%20Fe%E2%80%93Mg%E2%80%93chloritoid,%20from%20field%20evidence%20to%20thermodynamic%20modelling&rft.jtitle=Contributions%20to%20Mineralogy%20and%20Petrology&rft.au=Pourteau,%20Amaury&rft.date=2014-12-01&rft.volume=168&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=1090&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-014-1090-7&rft_dat=%3Cgale_hal_p%3EA407108759%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627637305&rft_id=info:pmid/&rft_galeid=A407108759&rfr_iscdi=true |