Rough Set Model for Nutrition Management in Site Specific Rice Growing Areas

The optimized fertilizer usage for better yield of rice cultivation is influenced by key factors like soil fertility, crop variety, duration, season, nutrient content of the fertilizer, time of application etc., It is observed that 60 percent of yield gap in tamilnadu is due to farmers lack of knowl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems and applications 2014-09, Vol.6 (10), p.77-86
Hauptverfasser: Lavanya, K., Iyengar, N.Ch.S.N., Durai, M.A. Saleem, Raguchander, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 10
container_start_page 77
container_title International journal of intelligent systems and applications
container_volume 6
creator Lavanya, K.
Iyengar, N.Ch.S.N.
Durai, M.A. Saleem
Raguchander, T.
description The optimized fertilizer usage for better yield of rice cultivation is influenced by key factors like soil fertility, crop variety, duration, season, nutrient content of the fertilizer, time of application etc., It is observed that 60 percent of yield gap in tamilnadu is due to farmers lack of knowledge on key factors and informal sources of information by pesticide dealers. In this study the major contributing factors for fertilizer requirement and optimum crop yield were analyzed based on rough set theory. In data analytics perspective the nutrient plan is sort of multiple attribute decision-making processes. To reduce the complexity of decision making, key factors that are indiscernible to conclusion are eliminated. Our rough set based approach improved the quality of agricultural data through removal of missing and redundant attributes. After pretreatment the data formed as target information, then attribute reduction algorithm was used to derive rules. The generated rules were used to structure the nutrition management decision-making. The precision was above 88% and experiments proved the feasibility of the developed decision support system for nutrient management.
doi_str_mv 10.5815/ijisa.2014.10.10
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1627095918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3505522451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1110-893b564fdc674ff048fd79e91713b8d1430ec29b0472e3ede6327c8f813a0e143</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGrvHgOet87sZneTYylahVahVfC2pNlJTWk3NdlF_PfdWnEub3jzeAMfY7cI41xifu-2LupxCijGvYVwwQYplCJRkMvL_118XLNRjFvop5BCohqw-dJ3m0--opYvfE07bn3gL10bXOt8wxe60RvaU9Ny1_CVa4mvDmScdYYvnSE-C_7bNRs-CaTjDbuyehdp9KdD9v748DZ9Suavs-fpZJ4YRIREqmydF8LWpiiFtSCkrUtFCkvM1rJGkQGZVK1BlCllVFORpaWRVmKmgfrzkN2dew_Bf3UU22rru9D0Lyss0hJUrlD2KTinTPAxBrLVIbi9Dj8VQnXCVv1iq07YThZCdgSBNl90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627095918</pqid></control><display><type>article</type><title>Rough Set Model for Nutrition Management in Site Specific Rice Growing Areas</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lavanya, K. ; Iyengar, N.Ch.S.N. ; Durai, M.A. Saleem ; Raguchander, T.</creator><creatorcontrib>Lavanya, K. ; Iyengar, N.Ch.S.N. ; Durai, M.A. Saleem ; Raguchander, T.</creatorcontrib><description>The optimized fertilizer usage for better yield of rice cultivation is influenced by key factors like soil fertility, crop variety, duration, season, nutrient content of the fertilizer, time of application etc., It is observed that 60 percent of yield gap in tamilnadu is due to farmers lack of knowledge on key factors and informal sources of information by pesticide dealers. In this study the major contributing factors for fertilizer requirement and optimum crop yield were analyzed based on rough set theory. In data analytics perspective the nutrient plan is sort of multiple attribute decision-making processes. To reduce the complexity of decision making, key factors that are indiscernible to conclusion are eliminated. Our rough set based approach improved the quality of agricultural data through removal of missing and redundant attributes. After pretreatment the data formed as target information, then attribute reduction algorithm was used to derive rules. The generated rules were used to structure the nutrition management decision-making. The precision was above 88% and experiments proved the feasibility of the developed decision support system for nutrient management.</description><identifier>ISSN: 2074-904X</identifier><identifier>EISSN: 2074-9058</identifier><identifier>DOI: 10.5815/ijisa.2014.10.10</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><ispartof>International journal of intelligent systems and applications, 2014-09, Vol.6 (10), p.77-86</ispartof><rights>Copyright Modern Education and Computer Science Press Sep 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lavanya, K.</creatorcontrib><creatorcontrib>Iyengar, N.Ch.S.N.</creatorcontrib><creatorcontrib>Durai, M.A. Saleem</creatorcontrib><creatorcontrib>Raguchander, T.</creatorcontrib><title>Rough Set Model for Nutrition Management in Site Specific Rice Growing Areas</title><title>International journal of intelligent systems and applications</title><description>The optimized fertilizer usage for better yield of rice cultivation is influenced by key factors like soil fertility, crop variety, duration, season, nutrient content of the fertilizer, time of application etc., It is observed that 60 percent of yield gap in tamilnadu is due to farmers lack of knowledge on key factors and informal sources of information by pesticide dealers. In this study the major contributing factors for fertilizer requirement and optimum crop yield were analyzed based on rough set theory. In data analytics perspective the nutrient plan is sort of multiple attribute decision-making processes. To reduce the complexity of decision making, key factors that are indiscernible to conclusion are eliminated. Our rough set based approach improved the quality of agricultural data through removal of missing and redundant attributes. After pretreatment the data formed as target information, then attribute reduction algorithm was used to derive rules. The generated rules were used to structure the nutrition management decision-making. The precision was above 88% and experiments proved the feasibility of the developed decision support system for nutrient management.</description><issn>2074-904X</issn><issn>2074-9058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kEFLAzEQhYMoWGrvHgOet87sZneTYylahVahVfC2pNlJTWk3NdlF_PfdWnEub3jzeAMfY7cI41xifu-2LupxCijGvYVwwQYplCJRkMvL_118XLNRjFvop5BCohqw-dJ3m0--opYvfE07bn3gL10bXOt8wxe60RvaU9Ny1_CVa4mvDmScdYYvnSE-C_7bNRs-CaTjDbuyehdp9KdD9v748DZ9Suavs-fpZJ4YRIREqmydF8LWpiiFtSCkrUtFCkvM1rJGkQGZVK1BlCllVFORpaWRVmKmgfrzkN2dew_Bf3UU22rru9D0Lyss0hJUrlD2KTinTPAxBrLVIbi9Dj8VQnXCVv1iq07YThZCdgSBNl90</recordid><startdate>20140908</startdate><enddate>20140908</enddate><creator>Lavanya, K.</creator><creator>Iyengar, N.Ch.S.N.</creator><creator>Durai, M.A. Saleem</creator><creator>Raguchander, T.</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140908</creationdate><title>Rough Set Model for Nutrition Management in Site Specific Rice Growing Areas</title><author>Lavanya, K. ; Iyengar, N.Ch.S.N. ; Durai, M.A. Saleem ; Raguchander, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1110-893b564fdc674ff048fd79e91713b8d1430ec29b0472e3ede6327c8f813a0e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lavanya, K.</creatorcontrib><creatorcontrib>Iyengar, N.Ch.S.N.</creatorcontrib><creatorcontrib>Durai, M.A. Saleem</creatorcontrib><creatorcontrib>Raguchander, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavanya, K.</au><au>Iyengar, N.Ch.S.N.</au><au>Durai, M.A. Saleem</au><au>Raguchander, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rough Set Model for Nutrition Management in Site Specific Rice Growing Areas</atitle><jtitle>International journal of intelligent systems and applications</jtitle><date>2014-09-08</date><risdate>2014</risdate><volume>6</volume><issue>10</issue><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>2074-904X</issn><eissn>2074-9058</eissn><abstract>The optimized fertilizer usage for better yield of rice cultivation is influenced by key factors like soil fertility, crop variety, duration, season, nutrient content of the fertilizer, time of application etc., It is observed that 60 percent of yield gap in tamilnadu is due to farmers lack of knowledge on key factors and informal sources of information by pesticide dealers. In this study the major contributing factors for fertilizer requirement and optimum crop yield were analyzed based on rough set theory. In data analytics perspective the nutrient plan is sort of multiple attribute decision-making processes. To reduce the complexity of decision making, key factors that are indiscernible to conclusion are eliminated. Our rough set based approach improved the quality of agricultural data through removal of missing and redundant attributes. After pretreatment the data formed as target information, then attribute reduction algorithm was used to derive rules. The generated rules were used to structure the nutrition management decision-making. The precision was above 88% and experiments proved the feasibility of the developed decision support system for nutrient management.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijisa.2014.10.10</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2074-904X
ispartof International journal of intelligent systems and applications, 2014-09, Vol.6 (10), p.77-86
issn 2074-904X
2074-9058
language eng
recordid cdi_proquest_journals_1627095918
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Rough Set Model for Nutrition Management in Site Specific Rice Growing Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rough%20Set%20Model%20for%20Nutrition%20Management%20in%20Site%20Specific%20Rice%20Growing%20Areas&rft.jtitle=International%20journal%20of%20intelligent%20systems%20and%20applications&rft.au=Lavanya,%20K.&rft.date=2014-09-08&rft.volume=6&rft.issue=10&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=2074-904X&rft.eissn=2074-9058&rft_id=info:doi/10.5815/ijisa.2014.10.10&rft_dat=%3Cproquest_cross%3E3505522451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627095918&rft_id=info:pmid/&rfr_iscdi=true