A Robust Skin Colour Segmentation Using Bivariate Pearson Type II[alpha][alpha] (Bivariate Beta) Mixture Model

Probability distributions formulate the basic framework for developing several segmentation algorithms. Among the various segmentation algorithms, skin colour segmentation is one of the most important algorithms for human computer interaction. Due to various random factors influencing the colour spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of image, graphics and signal processing graphics and signal processing, 2012-10, Vol.4 (11), p.1
Hauptverfasser: Jagadesh, B N, Rao, K Srinivasa, Satyanarayana, Ch
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title International journal of image, graphics and signal processing
container_volume 4
creator Jagadesh, B N
Rao, K Srinivasa
Satyanarayana, Ch
description Probability distributions formulate the basic framework for developing several segmentation algorithms. Among the various segmentation algorithms, skin colour segmentation is one of the most important algorithms for human computer interaction. Due to various random factors influencing the colour space, there does not exist a unique algorithm which serve the purpose of all images. In this paper a novel and new skin colour segmentation algorithms is proposed based on bivariate Pearson type II mixture model since the hue and saturation values always lies between 0 and 1. The bivariate feature vector of the human image is to be modeled with a Pearson type II mixture (bivariate Beta mixture) model. Using the EM Algorithm the model parameters are estimated. The segmentation algorithm is developed under Bayesian frame. Through experimentation the proposed skin colour segmentation algorithm performs better with respect to segmentation quality metrics such as PRI, VOI and GCE. The ROC curves plotted for the system also revealed that the proposed algorithm can segment the skin colour more effectively than the algorithm with Gaussian mixture model for some images.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1626639416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3502864881</sourcerecordid><originalsourceid>FETCH-proquest_journals_16266394163</originalsourceid><addsrcrecordid>eNqNjU0PwUAYhDdCQuh_eBMXDpJ-2XJECAeJaJ1EmhWv2qrd2t0K_94ehKu5PJOZSaZGWr4bhYOxO_LrXx-FTeJonbtWdOgFUdgiYgJbeay0gfjKBcxkISsFMWY3FIYZLgXsNBcZTPmDKc4MwgaZ0jZPXiXCarVnRXlhhw-g9xtO0bA-rPnTVAphLU9YdEjjzAqNzodt0l3Mk9lyUCp5r1CbNLf_wlapR31Kg3Ho0eC_1Rtc6Uro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626639416</pqid></control><display><type>article</type><title>A Robust Skin Colour Segmentation Using Bivariate Pearson Type II[alpha][alpha] (Bivariate Beta) Mixture Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jagadesh, B N ; Rao, K Srinivasa ; Satyanarayana, Ch</creator><creatorcontrib>Jagadesh, B N ; Rao, K Srinivasa ; Satyanarayana, Ch</creatorcontrib><description>Probability distributions formulate the basic framework for developing several segmentation algorithms. Among the various segmentation algorithms, skin colour segmentation is one of the most important algorithms for human computer interaction. Due to various random factors influencing the colour space, there does not exist a unique algorithm which serve the purpose of all images. In this paper a novel and new skin colour segmentation algorithms is proposed based on bivariate Pearson type II mixture model since the hue and saturation values always lies between 0 and 1. The bivariate feature vector of the human image is to be modeled with a Pearson type II mixture (bivariate Beta mixture) model. Using the EM Algorithm the model parameters are estimated. The segmentation algorithm is developed under Bayesian frame. Through experimentation the proposed skin colour segmentation algorithm performs better with respect to segmentation quality metrics such as PRI, VOI and GCE. The ROC curves plotted for the system also revealed that the proposed algorithm can segment the skin colour more effectively than the algorithm with Gaussian mixture model for some images.</description><identifier>ISSN: 2074-9074</identifier><identifier>EISSN: 2074-9082</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><ispartof>International journal of image, graphics and signal processing, 2012-10, Vol.4 (11), p.1</ispartof><rights>Copyright Modern Education and Computer Science Press Oct 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Jagadesh, B N</creatorcontrib><creatorcontrib>Rao, K Srinivasa</creatorcontrib><creatorcontrib>Satyanarayana, Ch</creatorcontrib><title>A Robust Skin Colour Segmentation Using Bivariate Pearson Type II[alpha][alpha] (Bivariate Beta) Mixture Model</title><title>International journal of image, graphics and signal processing</title><description>Probability distributions formulate the basic framework for developing several segmentation algorithms. Among the various segmentation algorithms, skin colour segmentation is one of the most important algorithms for human computer interaction. Due to various random factors influencing the colour space, there does not exist a unique algorithm which serve the purpose of all images. In this paper a novel and new skin colour segmentation algorithms is proposed based on bivariate Pearson type II mixture model since the hue and saturation values always lies between 0 and 1. The bivariate feature vector of the human image is to be modeled with a Pearson type II mixture (bivariate Beta mixture) model. Using the EM Algorithm the model parameters are estimated. The segmentation algorithm is developed under Bayesian frame. Through experimentation the proposed skin colour segmentation algorithm performs better with respect to segmentation quality metrics such as PRI, VOI and GCE. The ROC curves plotted for the system also revealed that the proposed algorithm can segment the skin colour more effectively than the algorithm with Gaussian mixture model for some images.</description><issn>2074-9074</issn><issn>2074-9082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjU0PwUAYhDdCQuh_eBMXDpJ-2XJECAeJaJ1EmhWv2qrd2t0K_94ehKu5PJOZSaZGWr4bhYOxO_LrXx-FTeJonbtWdOgFUdgiYgJbeay0gfjKBcxkISsFMWY3FIYZLgXsNBcZTPmDKc4MwgaZ0jZPXiXCarVnRXlhhw-g9xtO0bA-rPnTVAphLU9YdEjjzAqNzodt0l3Mk9lyUCp5r1CbNLf_wlapR31Kg3Ho0eC_1Rtc6Uro</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Jagadesh, B N</creator><creator>Rao, K Srinivasa</creator><creator>Satyanarayana, Ch</creator><general>Modern Education and Computer Science Press</general><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>A Robust Skin Colour Segmentation Using Bivariate Pearson Type II[alpha][alpha] (Bivariate Beta) Mixture Model</title><author>Jagadesh, B N ; Rao, K Srinivasa ; Satyanarayana, Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_16266394163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jagadesh, B N</creatorcontrib><creatorcontrib>Rao, K Srinivasa</creatorcontrib><creatorcontrib>Satyanarayana, Ch</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of image, graphics and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagadesh, B N</au><au>Rao, K Srinivasa</au><au>Satyanarayana, Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Skin Colour Segmentation Using Bivariate Pearson Type II[alpha][alpha] (Bivariate Beta) Mixture Model</atitle><jtitle>International journal of image, graphics and signal processing</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>4</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>2074-9074</issn><eissn>2074-9082</eissn><abstract>Probability distributions formulate the basic framework for developing several segmentation algorithms. Among the various segmentation algorithms, skin colour segmentation is one of the most important algorithms for human computer interaction. Due to various random factors influencing the colour space, there does not exist a unique algorithm which serve the purpose of all images. In this paper a novel and new skin colour segmentation algorithms is proposed based on bivariate Pearson type II mixture model since the hue and saturation values always lies between 0 and 1. The bivariate feature vector of the human image is to be modeled with a Pearson type II mixture (bivariate Beta mixture) model. Using the EM Algorithm the model parameters are estimated. The segmentation algorithm is developed under Bayesian frame. Through experimentation the proposed skin colour segmentation algorithm performs better with respect to segmentation quality metrics such as PRI, VOI and GCE. The ROC curves plotted for the system also revealed that the proposed algorithm can segment the skin colour more effectively than the algorithm with Gaussian mixture model for some images.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2074-9074
ispartof International journal of image, graphics and signal processing, 2012-10, Vol.4 (11), p.1
issn 2074-9074
2074-9082
language eng
recordid cdi_proquest_journals_1626639416
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A Robust Skin Colour Segmentation Using Bivariate Pearson Type II[alpha][alpha] (Bivariate Beta) Mixture Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Skin%20Colour%20Segmentation%20Using%20Bivariate%20Pearson%20Type%20II%5Balpha%5D%5Balpha%5D%20(Bivariate%20Beta)%20Mixture%20Model&rft.jtitle=International%20journal%20of%20image,%20graphics%20and%20signal%20processing&rft.au=Jagadesh,%20B%20N&rft.date=2012-10-01&rft.volume=4&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=2074-9074&rft.eissn=2074-9082&rft_id=info:doi/&rft_dat=%3Cproquest%3E3502864881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626639416&rft_id=info:pmid/&rfr_iscdi=true