A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities

In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2015-02, Vol.42 (2), p.267-280
1. Verfasser: Fuquene Patino, Jairo Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 267
container_title Journal of applied statistics
container_volume 42
creator Fuquene Patino, Jairo Alberto
description In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.
doi_str_mv 10.1080/02664763.2014.947357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1625907902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3500285061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD7-wEXAjZseU0n6tRLfCoIbXYcyXa2RTmdMunXm7-1hdOPCVVFw7uVyGDsCMQdRiVMhi0KXhZpLAXpe61Ll5RabgSpEJnIlt9lsjWRrZpftpfQuhKggVzNmz3ki77IFRvQ0RGf5Ba4oOew5LYdInvgndiNxHxrq-Jhc_8qRX7kJfeto4IsYLKXEvVsOYyQeWv6K3iNvqE9ucJQO2E6LXaLDn7vPnm-uny7vsofH2_vL84fMagFDVpWNAmqlLssKIS-khCqfPiKsXooWoVEvOrdtjdYKqQVpggKALIAFLXO1z042vdOkj5HSYLxLlroOewpjMlBoKauyrusJPf6Dvocx9tO6iZJ5LcpayInSG8rGkFKk1iyi8xhXBoRZmze_5s3avNmYn2Jnm5jr2xA9foXYNWbAVRdiG7G3Lhn1b8M3roeJpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625907902</pqid></control><display><type>article</type><title>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Fuquene Patino, Jairo Alberto</creator><creatorcontrib>Fuquene Patino, Jairo Alberto</creatorcontrib><description>In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2014.947357</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Applied statistics ; Bayesian analysis ; Computer simulation ; Density ; Dirichlet problem ; Dirichlet process mixture ; Estimating techniques ; Extreme values ; generalized Pareto distribution ; Parameter estimation ; Pareto optimality ; Pareto optimum ; Quantiles ; Samples ; Simulation ; Studies ; threshold estimation</subject><ispartof>Journal of applied statistics, 2015-02, Vol.42 (2), p.267-280</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</citedby><cites>FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02664763.2014.947357$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02664763.2014.947357$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids></links><search><creatorcontrib>Fuquene Patino, Jairo Alberto</creatorcontrib><title>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</title><title>Journal of applied statistics</title><description>In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.</description><subject>Applied statistics</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Dirichlet problem</subject><subject>Dirichlet process mixture</subject><subject>Estimating techniques</subject><subject>Extreme values</subject><subject>generalized Pareto distribution</subject><subject>Parameter estimation</subject><subject>Pareto optimality</subject><subject>Pareto optimum</subject><subject>Quantiles</subject><subject>Samples</subject><subject>Simulation</subject><subject>Studies</subject><subject>threshold estimation</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOD7-wEXAjZseU0n6tRLfCoIbXYcyXa2RTmdMunXm7-1hdOPCVVFw7uVyGDsCMQdRiVMhi0KXhZpLAXpe61Ll5RabgSpEJnIlt9lsjWRrZpftpfQuhKggVzNmz3ki77IFRvQ0RGf5Ba4oOew5LYdInvgndiNxHxrq-Jhc_8qRX7kJfeto4IsYLKXEvVsOYyQeWv6K3iNvqE9ucJQO2E6LXaLDn7vPnm-uny7vsofH2_vL84fMagFDVpWNAmqlLssKIS-khCqfPiKsXooWoVEvOrdtjdYKqQVpggKALIAFLXO1z042vdOkj5HSYLxLlroOewpjMlBoKauyrusJPf6Dvocx9tO6iZJ5LcpayInSG8rGkFKk1iyi8xhXBoRZmze_5s3avNmYn2Jnm5jr2xA9foXYNWbAVRdiG7G3Lhn1b8M3roeJpA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Fuquene Patino, Jairo Alberto</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</title><author>Fuquene Patino, Jairo Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied statistics</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Dirichlet problem</topic><topic>Dirichlet process mixture</topic><topic>Estimating techniques</topic><topic>Extreme values</topic><topic>generalized Pareto distribution</topic><topic>Parameter estimation</topic><topic>Pareto optimality</topic><topic>Pareto optimum</topic><topic>Quantiles</topic><topic>Samples</topic><topic>Simulation</topic><topic>Studies</topic><topic>threshold estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuquene Patino, Jairo Alberto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuquene Patino, Jairo Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</atitle><jtitle>Journal of applied statistics</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>42</volume><issue>2</issue><spage>267</spage><epage>280</epage><pages>267-280</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02664763.2014.947357</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2015-02, Vol.42 (2), p.267-280
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_1625907902
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Applied statistics
Bayesian analysis
Computer simulation
Density
Dirichlet problem
Dirichlet process mixture
Estimating techniques
Extreme values
generalized Pareto distribution
Parameter estimation
Pareto optimality
Pareto optimum
Quantiles
Samples
Simulation
Studies
threshold estimation
title A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-parametric%20Bayesian%20extreme%20value%20model%20using%20a%20Dirichlet%20process%20mixture%20of%20gamma%20densities&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Fuquene%20Patino,%20Jairo%20Alberto&rft.date=2015-02-01&rft.volume=42&rft.issue=2&rft.spage=267&rft.epage=280&rft.pages=267-280&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2014.947357&rft_dat=%3Cproquest_cross%3E3500285061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625907902&rft_id=info:pmid/&rfr_iscdi=true