A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities
In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for hig...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2015-02, Vol.42 (2), p.267-280 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 2 |
container_start_page | 267 |
container_title | Journal of applied statistics |
container_volume | 42 |
creator | Fuquene Patino, Jairo Alberto |
description | In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data. |
doi_str_mv | 10.1080/02664763.2014.947357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1625907902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3500285061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD7-wEXAjZseU0n6tRLfCoIbXYcyXa2RTmdMunXm7-1hdOPCVVFw7uVyGDsCMQdRiVMhi0KXhZpLAXpe61Ll5RabgSpEJnIlt9lsjWRrZpftpfQuhKggVzNmz3ki77IFRvQ0RGf5Ba4oOew5LYdInvgndiNxHxrq-Jhc_8qRX7kJfeto4IsYLKXEvVsOYyQeWv6K3iNvqE9ucJQO2E6LXaLDn7vPnm-uny7vsofH2_vL84fMagFDVpWNAmqlLssKIS-khCqfPiKsXooWoVEvOrdtjdYKqQVpggKALIAFLXO1z042vdOkj5HSYLxLlroOewpjMlBoKauyrusJPf6Dvocx9tO6iZJ5LcpayInSG8rGkFKk1iyi8xhXBoRZmze_5s3avNmYn2Jnm5jr2xA9foXYNWbAVRdiG7G3Lhn1b8M3roeJpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625907902</pqid></control><display><type>article</type><title>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</title><source>Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Fuquene Patino, Jairo Alberto</creator><creatorcontrib>Fuquene Patino, Jairo Alberto</creatorcontrib><description>In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2014.947357</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Applied statistics ; Bayesian analysis ; Computer simulation ; Density ; Dirichlet problem ; Dirichlet process mixture ; Estimating techniques ; Extreme values ; generalized Pareto distribution ; Parameter estimation ; Pareto optimality ; Pareto optimum ; Quantiles ; Samples ; Simulation ; Studies ; threshold estimation</subject><ispartof>Journal of applied statistics, 2015-02, Vol.42 (2), p.267-280</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</citedby><cites>FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02664763.2014.947357$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02664763.2014.947357$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids></links><search><creatorcontrib>Fuquene Patino, Jairo Alberto</creatorcontrib><title>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</title><title>Journal of applied statistics</title><description>In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.</description><subject>Applied statistics</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Dirichlet problem</subject><subject>Dirichlet process mixture</subject><subject>Estimating techniques</subject><subject>Extreme values</subject><subject>generalized Pareto distribution</subject><subject>Parameter estimation</subject><subject>Pareto optimality</subject><subject>Pareto optimum</subject><subject>Quantiles</subject><subject>Samples</subject><subject>Simulation</subject><subject>Studies</subject><subject>threshold estimation</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOD7-wEXAjZseU0n6tRLfCoIbXYcyXa2RTmdMunXm7-1hdOPCVVFw7uVyGDsCMQdRiVMhi0KXhZpLAXpe61Ll5RabgSpEJnIlt9lsjWRrZpftpfQuhKggVzNmz3ki77IFRvQ0RGf5Ba4oOew5LYdInvgndiNxHxrq-Jhc_8qRX7kJfeto4IsYLKXEvVsOYyQeWv6K3iNvqE9ucJQO2E6LXaLDn7vPnm-uny7vsofH2_vL84fMagFDVpWNAmqlLssKIS-khCqfPiKsXooWoVEvOrdtjdYKqQVpggKALIAFLXO1z042vdOkj5HSYLxLlroOewpjMlBoKauyrusJPf6Dvocx9tO6iZJ5LcpayInSG8rGkFKk1iyi8xhXBoRZmze_5s3avNmYn2Jnm5jr2xA9foXYNWbAVRdiG7G3Lhn1b8M3roeJpA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Fuquene Patino, Jairo Alberto</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</title><author>Fuquene Patino, Jairo Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-87d31ef24778a15622185247eea8b6fa1d3b45cf9acc0240e4e1611ec11c14253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied statistics</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Dirichlet problem</topic><topic>Dirichlet process mixture</topic><topic>Estimating techniques</topic><topic>Extreme values</topic><topic>generalized Pareto distribution</topic><topic>Parameter estimation</topic><topic>Pareto optimality</topic><topic>Pareto optimum</topic><topic>Quantiles</topic><topic>Samples</topic><topic>Simulation</topic><topic>Studies</topic><topic>threshold estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuquene Patino, Jairo Alberto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuquene Patino, Jairo Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities</atitle><jtitle>Journal of applied statistics</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>42</volume><issue>2</issue><spage>267</spage><epage>280</epage><pages>267-280</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>In this paper, we propose a model with a Dirichlet process mixture of gamma densities in the bulk part below threshold and a generalized Pareto density in the tail for extreme value estimation. The proposed model is simple and flexible for posterior density estimation and posterior inference for high quantiles. The model works well even for small sample sizes and in the absence of prior information. We evaluate the performance of the proposed model through a simulation study. Finally, the proposed model is applied to a real environmental data.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02664763.2014.947357</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2015-02, Vol.42 (2), p.267-280 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_proquest_journals_1625907902 |
source | Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | Applied statistics Bayesian analysis Computer simulation Density Dirichlet problem Dirichlet process mixture Estimating techniques Extreme values generalized Pareto distribution Parameter estimation Pareto optimality Pareto optimum Quantiles Samples Simulation Studies threshold estimation |
title | A semi-parametric Bayesian extreme value model using a Dirichlet process mixture of gamma densities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-parametric%20Bayesian%20extreme%20value%20model%20using%20a%20Dirichlet%20process%20mixture%20of%20gamma%20densities&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Fuquene%20Patino,%20Jairo%20Alberto&rft.date=2015-02-01&rft.volume=42&rft.issue=2&rft.spage=267&rft.epage=280&rft.pages=267-280&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2014.947357&rft_dat=%3Cproquest_cross%3E3500285061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625907902&rft_id=info:pmid/&rfr_iscdi=true |