Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles
We have compared volume mixing ratio profiles of atmospheric trace gases measured by the Atmospheric Chemistry Experiment (ACE) version 2.2 and the MkIV solar occultation Fourier transform infrared spectrometers. These gases are H2O, O3, N2O, CO, CH4, HNO3, HF, HCl, OCS, ClONO2, HCN, CH3Cl, CF4, CCl...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-03, Vol.116 (D6), p.1T-n/a, Article D06306 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D6 |
container_start_page | 1T |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Velazco, Voltaire A. Toon, Geoffrey C. Blavier, Jean-Francois L. Kleinböhl, Armin Manney, Gloria L. Daffer, William H. Bernath, Peter F. Walker, Kaley A. Boone, Chris |
description | We have compared volume mixing ratio profiles of atmospheric trace gases measured by the Atmospheric Chemistry Experiment (ACE) version 2.2 and the MkIV solar occultation Fourier transform infrared spectrometers. These gases are H2O, O3, N2O, CO, CH4, HNO3, HF, HCl, OCS, ClONO2, HCN, CH3Cl, CF4, CCl2F2, CCl3F, COF2, CHF2Cl, and SF6. Due to the complete lack of close spatiotemporal coincidences between the ACE occultations and the MkIV balloon flights, we used potential temperatures and equivalent latitudes from analyzed meteorological fields to find comparable ACE and MkIV profiles. The results show excellent agreement for CH4, N2O, and other long‐lived gases but slightly poorer agreement for shorter‐lived species like CO, O3, and HCN. For example, in the upper troposphere (∼400–650 K), maximum differences between MkIV and ACE are 2.4% for CH4, 1.7% for N2O, −12.4% for CO, −15.9% for O3, and −5.6% for HCN. In the lower stratosphere (∼650–900 K), maximum MkIV‐ACE differences are 7.6% for CH4, 14.1% for N2O, 7.3% for CO, −9.2% for O3, and 31.5% for HCN. Apart from a small vertical misregistration problem, the overall agreement between MkIV and ACE is very good.
Key Points
First use of a noncoincident validation method for MkIV and ACE profiles
Equivalent latitudes and theta coordinates allow better validation
Very good agreement between ACE and MkIV profiles of long‐lived gases |
doi_str_mv | 10.1029/2010JD014928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1625393991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498296461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-634508e6b17cedfa8acec895044895a1bc5bf3579c8a3ad0e1b673d710612d393</originalsourceid><addsrcrecordid>eNp9kF1PwjAUhhujiQS58wc08dZpP7ZuuyQDJgTR-AHxqum6LgzGiu2I7N9bMmO88lz0JG-e95yeF4BrjO4wIvE9QRjNRgj7MYnOQI_ggHmEIHIOek6MPERIeAkG1m6QKz9gPsI98LEUVZmLptQ11AVs1goOm522-7UypYTJWu1K25gWjo97p-xU3cCshbWupS5rWeYn4XE7XcJMVJV2U_ZGF2Wl7BW4KERl1eCn98H7ZPyWPHjzp3SaDOee9P2YeYz6AYoUy3AoVV6ISEglozhAvu9egTMZZAUNwlhGgoocKZyxkOYhRgyTnMa0D266uW7x50HZhm_0wdRuJceMBI6IY-yo246SRltrVMH37hphWo4RP-XH_-bncNrhX-6U9l-Wz9KXEWYRZs7ldS4XmTr-uoTZcvfnMOCrRcrp4pmt0tcJT-g3tZiACA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625393991</pqid></control><display><type>article</type><title>Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Velazco, Voltaire A. ; Toon, Geoffrey C. ; Blavier, Jean-Francois L. ; Kleinböhl, Armin ; Manney, Gloria L. ; Daffer, William H. ; Bernath, Peter F. ; Walker, Kaley A. ; Boone, Chris</creator><creatorcontrib>Velazco, Voltaire A. ; Toon, Geoffrey C. ; Blavier, Jean-Francois L. ; Kleinböhl, Armin ; Manney, Gloria L. ; Daffer, William H. ; Bernath, Peter F. ; Walker, Kaley A. ; Boone, Chris</creatorcontrib><description>We have compared volume mixing ratio profiles of atmospheric trace gases measured by the Atmospheric Chemistry Experiment (ACE) version 2.2 and the MkIV solar occultation Fourier transform infrared spectrometers. These gases are H2O, O3, N2O, CO, CH4, HNO3, HF, HCl, OCS, ClONO2, HCN, CH3Cl, CF4, CCl2F2, CCl3F, COF2, CHF2Cl, and SF6. Due to the complete lack of close spatiotemporal coincidences between the ACE occultations and the MkIV balloon flights, we used potential temperatures and equivalent latitudes from analyzed meteorological fields to find comparable ACE and MkIV profiles. The results show excellent agreement for CH4, N2O, and other long‐lived gases but slightly poorer agreement for shorter‐lived species like CO, O3, and HCN. For example, in the upper troposphere (∼400–650 K), maximum differences between MkIV and ACE are 2.4% for CH4, 1.7% for N2O, −12.4% for CO, −15.9% for O3, and −5.6% for HCN. In the lower stratosphere (∼650–900 K), maximum MkIV‐ACE differences are 7.6% for CH4, 14.1% for N2O, 7.3% for CO, −9.2% for O3, and 31.5% for HCN. Apart from a small vertical misregistration problem, the overall agreement between MkIV and ACE is very good.
Key Points
First use of a noncoincident validation method for MkIV and ACE profiles
Equivalent latitudes and theta coordinates allow better validation
Very good agreement between ACE and MkIV profiles of long‐lived gases</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD014928</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>ACE-FTS ; Atmospheric chemistry ; derived meteorological products ; Fourier transforms ; Geophysics ; MkIV balloon profiles ; noncoincident validation ; Spectrometers ; Stratosphere ; Troposphere ; validation</subject><ispartof>Journal of Geophysical Research, 2011-03, Vol.116 (D6), p.1T-n/a, Article D06306</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright Blackwell Publishing Ltd. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-634508e6b17cedfa8acec895044895a1bc5bf3579c8a3ad0e1b673d710612d393</citedby><cites>FETCH-LOGICAL-c4496-634508e6b17cedfa8acec895044895a1bc5bf3579c8a3ad0e1b673d710612d393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD014928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD014928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11518,27928,27929,45578,45579,46413,46472,46837,46896</link.rule.ids></links><search><creatorcontrib>Velazco, Voltaire A.</creatorcontrib><creatorcontrib>Toon, Geoffrey C.</creatorcontrib><creatorcontrib>Blavier, Jean-Francois L.</creatorcontrib><creatorcontrib>Kleinböhl, Armin</creatorcontrib><creatorcontrib>Manney, Gloria L.</creatorcontrib><creatorcontrib>Daffer, William H.</creatorcontrib><creatorcontrib>Bernath, Peter F.</creatorcontrib><creatorcontrib>Walker, Kaley A.</creatorcontrib><creatorcontrib>Boone, Chris</creatorcontrib><title>Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>We have compared volume mixing ratio profiles of atmospheric trace gases measured by the Atmospheric Chemistry Experiment (ACE) version 2.2 and the MkIV solar occultation Fourier transform infrared spectrometers. These gases are H2O, O3, N2O, CO, CH4, HNO3, HF, HCl, OCS, ClONO2, HCN, CH3Cl, CF4, CCl2F2, CCl3F, COF2, CHF2Cl, and SF6. Due to the complete lack of close spatiotemporal coincidences between the ACE occultations and the MkIV balloon flights, we used potential temperatures and equivalent latitudes from analyzed meteorological fields to find comparable ACE and MkIV profiles. The results show excellent agreement for CH4, N2O, and other long‐lived gases but slightly poorer agreement for shorter‐lived species like CO, O3, and HCN. For example, in the upper troposphere (∼400–650 K), maximum differences between MkIV and ACE are 2.4% for CH4, 1.7% for N2O, −12.4% for CO, −15.9% for O3, and −5.6% for HCN. In the lower stratosphere (∼650–900 K), maximum MkIV‐ACE differences are 7.6% for CH4, 14.1% for N2O, 7.3% for CO, −9.2% for O3, and 31.5% for HCN. Apart from a small vertical misregistration problem, the overall agreement between MkIV and ACE is very good.
Key Points
First use of a noncoincident validation method for MkIV and ACE profiles
Equivalent latitudes and theta coordinates allow better validation
Very good agreement between ACE and MkIV profiles of long‐lived gases</description><subject>ACE-FTS</subject><subject>Atmospheric chemistry</subject><subject>derived meteorological products</subject><subject>Fourier transforms</subject><subject>Geophysics</subject><subject>MkIV balloon profiles</subject><subject>noncoincident validation</subject><subject>Spectrometers</subject><subject>Stratosphere</subject><subject>Troposphere</subject><subject>validation</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1PwjAUhhujiQS58wc08dZpP7ZuuyQDJgTR-AHxqum6LgzGiu2I7N9bMmO88lz0JG-e95yeF4BrjO4wIvE9QRjNRgj7MYnOQI_ggHmEIHIOek6MPERIeAkG1m6QKz9gPsI98LEUVZmLptQ11AVs1goOm522-7UypYTJWu1K25gWjo97p-xU3cCshbWupS5rWeYn4XE7XcJMVJV2U_ZGF2Wl7BW4KERl1eCn98H7ZPyWPHjzp3SaDOee9P2YeYz6AYoUy3AoVV6ISEglozhAvu9egTMZZAUNwlhGgoocKZyxkOYhRgyTnMa0D266uW7x50HZhm_0wdRuJceMBI6IY-yo246SRltrVMH37hphWo4RP-XH_-bncNrhX-6U9l-Wz9KXEWYRZs7ldS4XmTr-uoTZcvfnMOCrRcrp4pmt0tcJT-g3tZiACA</recordid><startdate>20110327</startdate><enddate>20110327</enddate><creator>Velazco, Voltaire A.</creator><creator>Toon, Geoffrey C.</creator><creator>Blavier, Jean-Francois L.</creator><creator>Kleinböhl, Armin</creator><creator>Manney, Gloria L.</creator><creator>Daffer, William H.</creator><creator>Bernath, Peter F.</creator><creator>Walker, Kaley A.</creator><creator>Boone, Chris</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110327</creationdate><title>Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles</title><author>Velazco, Voltaire A. ; Toon, Geoffrey C. ; Blavier, Jean-Francois L. ; Kleinböhl, Armin ; Manney, Gloria L. ; Daffer, William H. ; Bernath, Peter F. ; Walker, Kaley A. ; Boone, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-634508e6b17cedfa8acec895044895a1bc5bf3579c8a3ad0e1b673d710612d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACE-FTS</topic><topic>Atmospheric chemistry</topic><topic>derived meteorological products</topic><topic>Fourier transforms</topic><topic>Geophysics</topic><topic>MkIV balloon profiles</topic><topic>noncoincident validation</topic><topic>Spectrometers</topic><topic>Stratosphere</topic><topic>Troposphere</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velazco, Voltaire A.</creatorcontrib><creatorcontrib>Toon, Geoffrey C.</creatorcontrib><creatorcontrib>Blavier, Jean-Francois L.</creatorcontrib><creatorcontrib>Kleinböhl, Armin</creatorcontrib><creatorcontrib>Manney, Gloria L.</creatorcontrib><creatorcontrib>Daffer, William H.</creatorcontrib><creatorcontrib>Bernath, Peter F.</creatorcontrib><creatorcontrib>Walker, Kaley A.</creatorcontrib><creatorcontrib>Boone, Chris</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velazco, Voltaire A.</au><au>Toon, Geoffrey C.</au><au>Blavier, Jean-Francois L.</au><au>Kleinböhl, Armin</au><au>Manney, Gloria L.</au><au>Daffer, William H.</au><au>Bernath, Peter F.</au><au>Walker, Kaley A.</au><au>Boone, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-03-27</date><risdate>2011</risdate><volume>116</volume><issue>D6</issue><spage>1T</spage><epage>n/a</epage><pages>1T-n/a</pages><artnum>D06306</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>We have compared volume mixing ratio profiles of atmospheric trace gases measured by the Atmospheric Chemistry Experiment (ACE) version 2.2 and the MkIV solar occultation Fourier transform infrared spectrometers. These gases are H2O, O3, N2O, CO, CH4, HNO3, HF, HCl, OCS, ClONO2, HCN, CH3Cl, CF4, CCl2F2, CCl3F, COF2, CHF2Cl, and SF6. Due to the complete lack of close spatiotemporal coincidences between the ACE occultations and the MkIV balloon flights, we used potential temperatures and equivalent latitudes from analyzed meteorological fields to find comparable ACE and MkIV profiles. The results show excellent agreement for CH4, N2O, and other long‐lived gases but slightly poorer agreement for shorter‐lived species like CO, O3, and HCN. For example, in the upper troposphere (∼400–650 K), maximum differences between MkIV and ACE are 2.4% for CH4, 1.7% for N2O, −12.4% for CO, −15.9% for O3, and −5.6% for HCN. In the lower stratosphere (∼650–900 K), maximum MkIV‐ACE differences are 7.6% for CH4, 14.1% for N2O, 7.3% for CO, −9.2% for O3, and 31.5% for HCN. Apart from a small vertical misregistration problem, the overall agreement between MkIV and ACE is very good.
Key Points
First use of a noncoincident validation method for MkIV and ACE profiles
Equivalent latitudes and theta coordinates allow better validation
Very good agreement between ACE and MkIV profiles of long‐lived gases</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD014928</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-03, Vol.116 (D6), p.1T-n/a, Article D06306 |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_1625393991 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | ACE-FTS Atmospheric chemistry derived meteorological products Fourier transforms Geophysics MkIV balloon profiles noncoincident validation Spectrometers Stratosphere Troposphere validation |
title | Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20Atmospheric%20Chemistry%20Experiment%20by%20noncoincident%20MkIV%20balloon%20profiles&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Velazco,%20Voltaire%20A.&rft.date=2011-03-27&rft.volume=116&rft.issue=D6&rft.spage=1T&rft.epage=n/a&rft.pages=1T-n/a&rft.artnum=D06306&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD014928&rft_dat=%3Cproquest_cross%3E3498296461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625393991&rft_id=info:pmid/&rfr_iscdi=true |