A Self-Stabilizing Distance-2 Edge Coloring Algorithm
In this paper, we propose a self-stabilizing distance-2 edge coloring algorithm for arbitrary graphs. The algorithm operates correctly under the distributed model and guarantees that two edges within distance 2 of each other receive distinct colors when the system stabilizes. It uses 2... (... - 1)...
Gespeichert in:
Veröffentlicht in: | Computer journal 2014-11, Vol.57 (11), p.1639-1648 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1648 |
---|---|
container_issue | 11 |
container_start_page | 1639 |
container_title | Computer journal |
container_volume | 57 |
creator | Lee, C.-L. Liu, T.-J. |
description | In this paper, we propose a self-stabilizing distance-2 edge coloring algorithm for arbitrary graphs. The algorithm operates correctly under the distributed model and guarantees that two edges within distance 2 of each other receive distinct colors when the system stabilizes. It uses 2... (... - 1) + 1 colors and stabilizes in 4n + (2... (... - 1) + 2)m rounds, where n,m, respectively, denote the number of nodes and edges and ... is the maximum degree of nodes in the graph. (ProQuest: ... denotes formulae/symbols omitted.) |
doi_str_mv | 10.1093/comjnl/bxt072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1625130307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3496423711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-e152a2d91877d9269893ecd30ea4289e5aa01111fe913b7d0a6db83c6ef978ca3</originalsourceid><addsrcrecordid>eNotkEFLxDAQRoMoWFeP3gue406SNmmOZV1XYcHD6jmkaVpb2mZNsqD-ervU7zIfzGMGHkL3BB4JSLY2buynYV19RxD0AiUk44ApcHGJEgACOOMUrtFNCD0AUJA8QXmZHuzQ4EPUVTd0v93Upk9diHoyFtN0W7c23bjB-fOiHNq5xM_xFl01egj27n-u0Mfz9n3zgvdvu9dNuceGyDxiS3KqaS1JIUQtKZeFZNbUDKzOaCFtrjWQOY2VhFWiBs3rqmCG20aKwmi2Qg_L3aN3XycbourdyU_zS0U4zQkDBmKm8EIZ70LwtlFH343a_ygC6mxGLWbUYob9AVIxVw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625130307</pqid></control><display><type>article</type><title>A Self-Stabilizing Distance-2 Edge Coloring Algorithm</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lee, C.-L. ; Liu, T.-J.</creator><creatorcontrib>Lee, C.-L. ; Liu, T.-J.</creatorcontrib><description>In this paper, we propose a self-stabilizing distance-2 edge coloring algorithm for arbitrary graphs. The algorithm operates correctly under the distributed model and guarantees that two edges within distance 2 of each other receive distinct colors when the system stabilizes. It uses 2... (... - 1) + 1 colors and stabilizes in 4n + (2... (... - 1) + 2)m rounds, where n,m, respectively, denote the number of nodes and edges and ... is the maximum degree of nodes in the graph. (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxt072</identifier><identifier>CODEN: CMPJAG</identifier><language>eng</language><publisher>Oxford: Oxford Publishing Limited (England)</publisher><subject>Algorithms ; Graphs</subject><ispartof>Computer journal, 2014-11, Vol.57 (11), p.1639-1648</ispartof><rights>Copyright Oxford Publishing Limited(England) Nov 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c195t-e152a2d91877d9269893ecd30ea4289e5aa01111fe913b7d0a6db83c6ef978ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, C.-L.</creatorcontrib><creatorcontrib>Liu, T.-J.</creatorcontrib><title>A Self-Stabilizing Distance-2 Edge Coloring Algorithm</title><title>Computer journal</title><description>In this paper, we propose a self-stabilizing distance-2 edge coloring algorithm for arbitrary graphs. The algorithm operates correctly under the distributed model and guarantees that two edges within distance 2 of each other receive distinct colors when the system stabilizes. It uses 2... (... - 1) + 1 colors and stabilizes in 4n + (2... (... - 1) + 2)m rounds, where n,m, respectively, denote the number of nodes and edges and ... is the maximum degree of nodes in the graph. (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Algorithms</subject><subject>Graphs</subject><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkEFLxDAQRoMoWFeP3gue406SNmmOZV1XYcHD6jmkaVpb2mZNsqD-ervU7zIfzGMGHkL3BB4JSLY2buynYV19RxD0AiUk44ApcHGJEgACOOMUrtFNCD0AUJA8QXmZHuzQ4EPUVTd0v93Upk9diHoyFtN0W7c23bjB-fOiHNq5xM_xFl01egj27n-u0Mfz9n3zgvdvu9dNuceGyDxiS3KqaS1JIUQtKZeFZNbUDKzOaCFtrjWQOY2VhFWiBs3rqmCG20aKwmi2Qg_L3aN3XycbourdyU_zS0U4zQkDBmKm8EIZ70LwtlFH343a_ygC6mxGLWbUYob9AVIxVw8</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Lee, C.-L.</creator><creator>Liu, T.-J.</creator><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>A Self-Stabilizing Distance-2 Edge Coloring Algorithm</title><author>Lee, C.-L. ; Liu, T.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-e152a2d91877d9269893ecd30ea4289e5aa01111fe913b7d0a6db83c6ef978ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, C.-L.</creatorcontrib><creatorcontrib>Liu, T.-J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, C.-L.</au><au>Liu, T.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self-Stabilizing Distance-2 Edge Coloring Algorithm</atitle><jtitle>Computer journal</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>57</volume><issue>11</issue><spage>1639</spage><epage>1648</epage><pages>1639-1648</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><coden>CMPJAG</coden><abstract>In this paper, we propose a self-stabilizing distance-2 edge coloring algorithm for arbitrary graphs. The algorithm operates correctly under the distributed model and guarantees that two edges within distance 2 of each other receive distinct colors when the system stabilizes. It uses 2... (... - 1) + 1 colors and stabilizes in 4n + (2... (... - 1) + 2)m rounds, where n,m, respectively, denote the number of nodes and edges and ... is the maximum degree of nodes in the graph. (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>Oxford</cop><pub>Oxford Publishing Limited (England)</pub><doi>10.1093/comjnl/bxt072</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4620 |
ispartof | Computer journal, 2014-11, Vol.57 (11), p.1639-1648 |
issn | 0010-4620 1460-2067 |
language | eng |
recordid | cdi_proquest_journals_1625130307 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Algorithms Graphs |
title | A Self-Stabilizing Distance-2 Edge Coloring Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self-Stabilizing%20Distance-2%20Edge%20Coloring%20Algorithm&rft.jtitle=Computer%20journal&rft.au=Lee,%20C.-L.&rft.date=2014-11-01&rft.volume=57&rft.issue=11&rft.spage=1639&rft.epage=1648&rft.pages=1639-1648&rft.issn=0010-4620&rft.eissn=1460-2067&rft.coden=CMPJAG&rft_id=info:doi/10.1093/comjnl/bxt072&rft_dat=%3Cproquest_cross%3E3496423711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625130307&rft_id=info:pmid/&rfr_iscdi=true |