Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio

Effects of basicity, B (CaO:SiO 2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2014-12, Vol.45 (6), p.2097-2105
Hauptverfasser: Webster, Nathan A. S., Pownceby, Mark I., Madsen, Ian C., Studer, Andrew J., Manuel, James R., Kimpton, Justin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2105
container_issue 6
container_start_page 2097
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 45
creator Webster, Nathan A. S.
Pownceby, Mark I.
Madsen, Ian C.
Studer, Andrew J.
Manuel, James R.
Kimpton, Justin A.
description Effects of basicity, B (CaO:SiO 2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B  = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B  = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B  = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B  = 2.48 to 25 wt pct for the B  = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B  = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.
doi_str_mv 10.1007/s11663-014-0137-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1623098171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3493295261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-b6b88fbfcac18cf9e255cd6347f96f281b5c1ddc9adc4e6f1f5ca62637d1c9cf3</originalsourceid><addsrcrecordid>eNp1kM9q3DAQxk1JIX-aB-hNUArNQa1GWslWbtslbhcCG7LpWWhlKVWwpUSyD32GvHTlOIReehhmNPPNT8NXVR-BfAVC6m8ZQAiGCaxKsBrzd9UJ8BXDIEEclZrUDHMB_Lg6zfmBECKkZCfVczuFTg82jLrPKDq09703Ebc2JT_aubPRvfHTgHTo0LqfBh_K48u-3awvXnpzhbdom2JAu2QLIYw2oe8xdD7co5vfOlvUxjTo0cdwia6cs2bMC3p3ufc7im7n2YfqvStX2PPXfFb9aq_uNj_x9e7HdrO-xoaDHPFBHJrGHZzRBhrjpKWcm06wVe2kcLSBAzfQdUbqzqyscOC40YIKVndgpHHsrPq0cB9TfJpsHtVDnFIoXyoQlBHZQA1FBYvKpJhzsk49Jj_o9EcBUbPnavFcFc_V7LniZefzK1lno3uXdDA-vy1SSSiVlBUdXXS5jMK9Tf9c8F_4XzzjkFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1623098171</pqid></control><display><type>article</type><title>Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio</title><source>Springer Nature - Complete Springer Journals</source><creator>Webster, Nathan A. S. ; Pownceby, Mark I. ; Madsen, Ian C. ; Studer, Andrew J. ; Manuel, James R. ; Kimpton, Justin A.</creator><creatorcontrib>Webster, Nathan A. S. ; Pownceby, Mark I. ; Madsen, Ian C. ; Studer, Andrew J. ; Manuel, James R. ; Kimpton, Justin A.</creatorcontrib><description>Effects of basicity, B (CaO:SiO 2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B  = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B  = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B  = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B  = 2.48 to 25 wt pct for the B  = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B  = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-014-0137-5</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum ; Applied sciences ; Calcium ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Ferrites ; Iron ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Phase transitions ; Powder metallurgy. Composite materials ; Production of metals ; Production techniques ; Sintered metals and alloys. Pseudo alloys. Cermets ; Sintering ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2014-12, Vol.45 (6), p.2097-2105</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-b6b88fbfcac18cf9e255cd6347f96f281b5c1ddc9adc4e6f1f5ca62637d1c9cf3</citedby><cites>FETCH-LOGICAL-c519t-b6b88fbfcac18cf9e255cd6347f96f281b5c1ddc9adc4e6f1f5ca62637d1c9cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-014-0137-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-014-0137-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29022923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Webster, Nathan A. S.</creatorcontrib><creatorcontrib>Pownceby, Mark I.</creatorcontrib><creatorcontrib>Madsen, Ian C.</creatorcontrib><creatorcontrib>Studer, Andrew J.</creatorcontrib><creatorcontrib>Manuel, James R.</creatorcontrib><creatorcontrib>Kimpton, Justin A.</creatorcontrib><title>Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Effects of basicity, B (CaO:SiO 2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B  = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B  = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B  = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B  = 2.48 to 25 wt pct for the B  = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B  = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.</description><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Calcium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Ferrites</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production of metals</subject><subject>Production techniques</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>Sintering</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9q3DAQxk1JIX-aB-hNUArNQa1GWslWbtslbhcCG7LpWWhlKVWwpUSyD32GvHTlOIReehhmNPPNT8NXVR-BfAVC6m8ZQAiGCaxKsBrzd9UJ8BXDIEEclZrUDHMB_Lg6zfmBECKkZCfVczuFTg82jLrPKDq09703Ebc2JT_aubPRvfHTgHTo0LqfBh_K48u-3awvXnpzhbdom2JAu2QLIYw2oe8xdD7co5vfOlvUxjTo0cdwia6cs2bMC3p3ufc7im7n2YfqvStX2PPXfFb9aq_uNj_x9e7HdrO-xoaDHPFBHJrGHZzRBhrjpKWcm06wVe2kcLSBAzfQdUbqzqyscOC40YIKVndgpHHsrPq0cB9TfJpsHtVDnFIoXyoQlBHZQA1FBYvKpJhzsk49Jj_o9EcBUbPnavFcFc_V7LniZefzK1lno3uXdDA-vy1SSSiVlBUdXXS5jMK9Tf9c8F_4XzzjkFE</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Webster, Nathan A. S.</creator><creator>Pownceby, Mark I.</creator><creator>Madsen, Ian C.</creator><creator>Studer, Andrew J.</creator><creator>Manuel, James R.</creator><creator>Kimpton, Justin A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20141201</creationdate><title>Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio</title><author>Webster, Nathan A. S. ; Pownceby, Mark I. ; Madsen, Ian C. ; Studer, Andrew J. ; Manuel, James R. ; Kimpton, Justin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-b6b88fbfcac18cf9e255cd6347f96f281b5c1ddc9adc4e6f1f5ca62637d1c9cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Calcium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Ferrites</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production of metals</topic><topic>Production techniques</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>Sintering</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webster, Nathan A. S.</creatorcontrib><creatorcontrib>Pownceby, Mark I.</creatorcontrib><creatorcontrib>Madsen, Ian C.</creatorcontrib><creatorcontrib>Studer, Andrew J.</creatorcontrib><creatorcontrib>Manuel, James R.</creatorcontrib><creatorcontrib>Kimpton, Justin A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webster, Nathan A. S.</au><au>Pownceby, Mark I.</au><au>Madsen, Ian C.</au><au>Studer, Andrew J.</au><au>Manuel, James R.</au><au>Kimpton, Justin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>45</volume><issue>6</issue><spage>2097</spage><epage>2105</epage><pages>2097-2105</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>Effects of basicity, B (CaO:SiO 2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B  = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B  = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B  = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B  = 2.48 to 25 wt pct for the B  = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B  = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-014-0137-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2014-12, Vol.45 (6), p.2097-2105
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_1623098171
source Springer Nature - Complete Springer Journals
subjects Aluminum
Applied sciences
Calcium
Characterization and Evaluation of Materials
Chemistry and Materials Science
Exact sciences and technology
Ferrites
Iron
Materials Science
Metallic Materials
Metals. Metallurgy
Nanotechnology
Phase transitions
Powder metallurgy. Composite materials
Production of metals
Production techniques
Sintered metals and alloys. Pseudo alloys. Cermets
Sintering
Structural Materials
Surfaces and Interfaces
Thin Films
title Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamentals%20of%20Silico-Ferrite%20of%20Calcium%20and%20Aluminum%20(SFCA)%20and%20SFCA-I%20Iron%20Ore%20Sinter%20Bonding%20Phase%20Formation:%20Effects%20of%20CaO:SiO2%20Ratio&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Webster,%20Nathan%20A.%20S.&rft.date=2014-12-01&rft.volume=45&rft.issue=6&rft.spage=2097&rft.epage=2105&rft.pages=2097-2105&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-014-0137-5&rft_dat=%3Cproquest_cross%3E3493295261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1623098171&rft_id=info:pmid/&rfr_iscdi=true