Osmotic stress decreases PIP aquaporin transcripts in barley roots but H₂O₂ is not involved in this process

Previous reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant research 2014-11, Vol.127 (6), p.787-792
Hauptverfasser: Katsuhara, Maki, Tsuji, Nobuya, Shibasaka, Mineo, Panda, Sanjib Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue 6
container_start_page 787
container_title Journal of plant research
container_volume 127
creator Katsuhara, Maki
Tsuji, Nobuya
Shibasaka, Mineo
Panda, Sanjib Kumar
description Previous reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples. A large decrease of HvPIP2;1 protein was also recorded. This reduction of both transcripts and proteins of HvPIP2s should be physiologically effective for preventing or reducing dehydration at an initial phase of severe salt/osmotic stress. Root cell sap osmolality increased from 278 to 372 mOsm 24 h after 360 mM mannitol treatment. These steps can secure survival and growth recovery with water reabsorption in barley. Our data also suggest that H₂O₂ seems not to be the main cause of osmotic stress-induced transcriptional down-regulation within the concentrations (20–500 μM) and time periods (24 h) examined, although H₂O₂ was previously proposed to be involved in the mechanisms of salinity/osmotic tolerance.
doi_str_mv 10.1007/s10265-014-0662-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1618067821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3475153941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b501fd85db8f5912224b307c6c778e760620ba506aaa231572d08439be5c28bc3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVpaCZpH6CbVtC10yvJ-vGyhDYJBCaQZi0kWU4dZqyJrhyYbR61T1INTktWXQjpXn3nHDiEfGRwxgD0V2TAlWyAtQ0oxZv9G7JiipkGjIK3ZAVdfXdtC8fkBPEBgGnZmXfkmEvWCSXkiqQ1blMZA8WSIyLtY8jRYUR6c3VD3ePsdimPEy3ZTRjyuCtI6-hd3sQ9zSnV2c-FXv5-fl7XQ0ekUyqVeUqbp9gf4PKrLnc5hRrwnhwNboPxw8t9Su5-fP95ftlcry-uzr9dN0F0qjReAht6I3tvBtkxznnrBeiggtYmagWKg3cSlHOOCyY178G0ovNRBm58EKfky-Jbcx_niMU-pDlPNdIeGgKlDWeVYgsVckLMcbC7PG5d3lsG9lCxXSq2tWJ7qNjuq-bTi_Pst7H_p_jbaQX4AmD9mu5jfhX9H9fPi2hwybr7PKK9u-XAJABIJYUWfwCV15Ix</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618067821</pqid></control><display><type>article</type><title>Osmotic stress decreases PIP aquaporin transcripts in barley roots but H₂O₂ is not involved in this process</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Katsuhara, Maki ; Tsuji, Nobuya ; Shibasaka, Mineo ; Panda, Sanjib Kumar</creator><creatorcontrib>Katsuhara, Maki ; Tsuji, Nobuya ; Shibasaka, Mineo ; Panda, Sanjib Kumar</creatorcontrib><description>Previous reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples. A large decrease of HvPIP2;1 protein was also recorded. This reduction of both transcripts and proteins of HvPIP2s should be physiologically effective for preventing or reducing dehydration at an initial phase of severe salt/osmotic stress. Root cell sap osmolality increased from 278 to 372 mOsm 24 h after 360 mM mannitol treatment. These steps can secure survival and growth recovery with water reabsorption in barley. Our data also suggest that H₂O₂ seems not to be the main cause of osmotic stress-induced transcriptional down-regulation within the concentrations (20–500 μM) and time periods (24 h) examined, although H₂O₂ was previously proposed to be involved in the mechanisms of salinity/osmotic tolerance.</description><identifier>ISSN: 0918-9440</identifier><identifier>EISSN: 1618-0860</identifier><identifier>DOI: 10.1007/s10265-014-0662-y</identifier><identifier>PMID: 25193635</identifier><language>eng</language><publisher>Tokyo: Springer-Verlag</publisher><subject>Abiotic stress ; aquaporins ; Aquaporins - genetics ; Aquaporins - metabolism ; Barley ; Biomedical and Life Sciences ; Dehydration ; Gene Expression Regulation, Plant - drug effects ; Hordeum - drug effects ; Hordeum - genetics ; Hordeum - metabolism ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Life Sciences ; mannitol ; osmolality ; Osmosis ; Osmotic Pressure ; osmotic stress ; osmotolerance ; Plant Biochemistry ; Plant Ecology ; Plant Physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - drug effects ; Plant Roots - metabolism ; Plant Sciences ; Plant tolerance ; Regular Paper ; root hydraulic conductivity ; roots ; Salinity ; salt stress ; sap ; Sodium Chloride - metabolism ; Stress, Physiological - drug effects ; transcription (genetics) ; Transcription factors ; Water - metabolism</subject><ispartof>Journal of plant research, 2014-11, Vol.127 (6), p.787-792</ispartof><rights>The Botanical Society of Japan and Springer Japan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b501fd85db8f5912224b307c6c778e760620ba506aaa231572d08439be5c28bc3</citedby><cites>FETCH-LOGICAL-c396t-b501fd85db8f5912224b307c6c778e760620ba506aaa231572d08439be5c28bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10265-014-0662-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10265-014-0662-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25193635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katsuhara, Maki</creatorcontrib><creatorcontrib>Tsuji, Nobuya</creatorcontrib><creatorcontrib>Shibasaka, Mineo</creatorcontrib><creatorcontrib>Panda, Sanjib Kumar</creatorcontrib><title>Osmotic stress decreases PIP aquaporin transcripts in barley roots but H₂O₂ is not involved in this process</title><title>Journal of plant research</title><addtitle>J Plant Res</addtitle><addtitle>J Plant Res</addtitle><description>Previous reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples. A large decrease of HvPIP2;1 protein was also recorded. This reduction of both transcripts and proteins of HvPIP2s should be physiologically effective for preventing or reducing dehydration at an initial phase of severe salt/osmotic stress. Root cell sap osmolality increased from 278 to 372 mOsm 24 h after 360 mM mannitol treatment. These steps can secure survival and growth recovery with water reabsorption in barley. Our data also suggest that H₂O₂ seems not to be the main cause of osmotic stress-induced transcriptional down-regulation within the concentrations (20–500 μM) and time periods (24 h) examined, although H₂O₂ was previously proposed to be involved in the mechanisms of salinity/osmotic tolerance.</description><subject>Abiotic stress</subject><subject>aquaporins</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Barley</subject><subject>Biomedical and Life Sciences</subject><subject>Dehydration</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Hordeum - drug effects</subject><subject>Hordeum - genetics</subject><subject>Hordeum - metabolism</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Life Sciences</subject><subject>mannitol</subject><subject>osmolality</subject><subject>Osmosis</subject><subject>Osmotic Pressure</subject><subject>osmotic stress</subject><subject>osmotolerance</subject><subject>Plant Biochemistry</subject><subject>Plant Ecology</subject><subject>Plant Physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - metabolism</subject><subject>Plant Sciences</subject><subject>Plant tolerance</subject><subject>Regular Paper</subject><subject>root hydraulic conductivity</subject><subject>roots</subject><subject>Salinity</subject><subject>salt stress</subject><subject>sap</subject><subject>Sodium Chloride - metabolism</subject><subject>Stress, Physiological - drug effects</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Water - metabolism</subject><issn>0918-9440</issn><issn>1618-0860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1q3DAUhUVpaCZpH6CbVtC10yvJ-vGyhDYJBCaQZi0kWU4dZqyJrhyYbR61T1INTktWXQjpXn3nHDiEfGRwxgD0V2TAlWyAtQ0oxZv9G7JiipkGjIK3ZAVdfXdtC8fkBPEBgGnZmXfkmEvWCSXkiqQ1blMZA8WSIyLtY8jRYUR6c3VD3ePsdimPEy3ZTRjyuCtI6-hd3sQ9zSnV2c-FXv5-fl7XQ0ekUyqVeUqbp9gf4PKrLnc5hRrwnhwNboPxw8t9Su5-fP95ftlcry-uzr9dN0F0qjReAht6I3tvBtkxznnrBeiggtYmagWKg3cSlHOOCyY178G0ovNRBm58EKfky-Jbcx_niMU-pDlPNdIeGgKlDWeVYgsVckLMcbC7PG5d3lsG9lCxXSq2tWJ7qNjuq-bTi_Pst7H_p_jbaQX4AmD9mu5jfhX9H9fPi2hwybr7PKK9u-XAJABIJYUWfwCV15Ix</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Katsuhara, Maki</creator><creator>Tsuji, Nobuya</creator><creator>Shibasaka, Mineo</creator><creator>Panda, Sanjib Kumar</creator><general>Springer-Verlag</general><general>Springer Japan</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7ST</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20141101</creationdate><title>Osmotic stress decreases PIP aquaporin transcripts in barley roots but H₂O₂ is not involved in this process</title><author>Katsuhara, Maki ; Tsuji, Nobuya ; Shibasaka, Mineo ; Panda, Sanjib Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b501fd85db8f5912224b307c6c778e760620ba506aaa231572d08439be5c28bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abiotic stress</topic><topic>aquaporins</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Barley</topic><topic>Biomedical and Life Sciences</topic><topic>Dehydration</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Hordeum - drug effects</topic><topic>Hordeum - genetics</topic><topic>Hordeum - metabolism</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Life Sciences</topic><topic>mannitol</topic><topic>osmolality</topic><topic>Osmosis</topic><topic>Osmotic Pressure</topic><topic>osmotic stress</topic><topic>osmotolerance</topic><topic>Plant Biochemistry</topic><topic>Plant Ecology</topic><topic>Plant Physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - metabolism</topic><topic>Plant Sciences</topic><topic>Plant tolerance</topic><topic>Regular Paper</topic><topic>root hydraulic conductivity</topic><topic>roots</topic><topic>Salinity</topic><topic>salt stress</topic><topic>sap</topic><topic>Sodium Chloride - metabolism</topic><topic>Stress, Physiological - drug effects</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsuhara, Maki</creatorcontrib><creatorcontrib>Tsuji, Nobuya</creatorcontrib><creatorcontrib>Shibasaka, Mineo</creatorcontrib><creatorcontrib>Panda, Sanjib Kumar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of plant research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsuhara, Maki</au><au>Tsuji, Nobuya</au><au>Shibasaka, Mineo</au><au>Panda, Sanjib Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic stress decreases PIP aquaporin transcripts in barley roots but H₂O₂ is not involved in this process</atitle><jtitle>Journal of plant research</jtitle><stitle>J Plant Res</stitle><addtitle>J Plant Res</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>127</volume><issue>6</issue><spage>787</spage><epage>792</epage><pages>787-792</pages><issn>0918-9440</issn><eissn>1618-0860</eissn><abstract>Previous reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples. A large decrease of HvPIP2;1 protein was also recorded. This reduction of both transcripts and proteins of HvPIP2s should be physiologically effective for preventing or reducing dehydration at an initial phase of severe salt/osmotic stress. Root cell sap osmolality increased from 278 to 372 mOsm 24 h after 360 mM mannitol treatment. These steps can secure survival and growth recovery with water reabsorption in barley. Our data also suggest that H₂O₂ seems not to be the main cause of osmotic stress-induced transcriptional down-regulation within the concentrations (20–500 μM) and time periods (24 h) examined, although H₂O₂ was previously proposed to be involved in the mechanisms of salinity/osmotic tolerance.</abstract><cop>Tokyo</cop><pub>Springer-Verlag</pub><pmid>25193635</pmid><doi>10.1007/s10265-014-0662-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0918-9440
ispartof Journal of plant research, 2014-11, Vol.127 (6), p.787-792
issn 0918-9440
1618-0860
language eng
recordid cdi_proquest_journals_1618067821
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abiotic stress
aquaporins
Aquaporins - genetics
Aquaporins - metabolism
Barley
Biomedical and Life Sciences
Dehydration
Gene Expression Regulation, Plant - drug effects
Hordeum - drug effects
Hordeum - genetics
Hordeum - metabolism
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Life Sciences
mannitol
osmolality
Osmosis
Osmotic Pressure
osmotic stress
osmotolerance
Plant Biochemistry
Plant Ecology
Plant Physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - drug effects
Plant Roots - metabolism
Plant Sciences
Plant tolerance
Regular Paper
root hydraulic conductivity
roots
Salinity
salt stress
sap
Sodium Chloride - metabolism
Stress, Physiological - drug effects
transcription (genetics)
Transcription factors
Water - metabolism
title Osmotic stress decreases PIP aquaporin transcripts in barley roots but H₂O₂ is not involved in this process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20stress%20decreases%20PIP%20aquaporin%20transcripts%20in%20barley%20roots%20but%20H%E2%82%82O%E2%82%82%20is%20not%20involved%20in%20this%20process&rft.jtitle=Journal%20of%20plant%20research&rft.au=Katsuhara,%20Maki&rft.date=2014-11-01&rft.volume=127&rft.issue=6&rft.spage=787&rft.epage=792&rft.pages=787-792&rft.issn=0918-9440&rft.eissn=1618-0860&rft_id=info:doi/10.1007/s10265-014-0662-y&rft_dat=%3Cproquest_cross%3E3475153941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618067821&rft_id=info:pmid/25193635&rfr_iscdi=true