Physicochemical effects on sulfite transformation in a lipid- rich Chlorella sp. strain

SO₂ is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO₂ from flue gas by a microalgal suspens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of oceanology and limnology 2014-11, Vol.32 (6), p.1288-1296
Hauptverfasser: Liang, Fang, Wen, Xiaobin, Luo, Liming, Geng, Yahong, Li, Yeguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1296
container_issue 6
container_start_page 1288
container_title Chinese journal of oceanology and limnology
container_volume 32
creator Liang, Fang
Wen, Xiaobin
Luo, Liming
Geng, Yahong
Li, Yeguang
description SO₂ is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO₂ from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m²·s), NaHCO₃ concentration of 6 g/L, initial cell density (OD₅₄₀) of 0.8 and pH of 9–10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO²⁻ ₃ to SO²⁻ ₄, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO₂, assuming there is adequate control of the pH.
doi_str_mv 10.1007/s00343-015-4130-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1618067114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662967962</cqvip_id><sourcerecordid>1627984759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-d005edaa9167dd76250f576dfd723b26a08a42b788a4ba17f62a664188cfffd23</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-AE8GvXjJmqTz0TnK4BcsKOjiMWTSyXSWns5sqgd2_7019CLiYU8FxfNWPbyEvBb8UnBuPwDnneoYF5op0XF294RshHMd05zrp2TDpVZMce2ekxcAN0g7xd2G_P4x3kOJNY7pUGKYaMo5xQVonSmcplyWRJcWZsi1HcJScF1mGuhUjmVgtJU40u041ZamKVA4XlJAvMwvybMcJkivHuYFuf786df2K7v6_uXb9uMVi0qqhQ1ol4YQnDB2GKyRmmdtzZAHK7udNIH3Qcmd7XHsgrDZyGCMEn0fc86D7C7I-_XusdXbU4LFHwrEs8yc6gm8MNK6XlntEH33H3pTT21GO6REz40VQiElViq2CtBS9sdWDqHde8H9uWq_Vu2xan-u2t9hRq4ZQHbep_bP5UdCb9ZQDtWHfSvgr39KBDjyqpP2UQJVtUDi7YPsWOf9Lf7-a2uMdMY6I7s_KvGeyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618067114</pqid></control><display><type>article</type><title>Physicochemical effects on sulfite transformation in a lipid- rich Chlorella sp. strain</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>SpringerNature Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Liang, Fang ; Wen, Xiaobin ; Luo, Liming ; Geng, Yahong ; Li, Yeguang</creator><creatorcontrib>Liang, Fang ; Wen, Xiaobin ; Luo, Liming ; Geng, Yahong ; Li, Yeguang</creatorcontrib><description>SO₂ is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO₂ from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m²·s), NaHCO₃ concentration of 6 g/L, initial cell density (OD₅₄₀) of 0.8 and pH of 9–10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO²⁻ ₃ to SO²⁻ ₄, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO₂, assuming there is adequate control of the pH.</description><identifier>ISSN: 0254-4059</identifier><identifier>ISSN: 2096-5508</identifier><identifier>EISSN: 1993-5005</identifier><identifier>EISSN: 2523-3521</identifier><identifier>DOI: 10.1007/s00343-015-4130-x</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>air ; Algae ; Algal growth ; biodiesel ; Biodiesel fuels ; Biofuels ; Biology ; Cell density ; Chlorella ; culture media ; Earth and Environmental Science ; Earth Sciences ; fatty acid composition ; Fatty acids ; feedstocks ; Flue gas ; Genetic transformation ; Growth ; Light intensity ; lipid content ; Lipids ; Luminous intensity ; Marine biology ; Mass production ; microalgae ; Oceanography ; oxygen ; pH effects ; Physicochemical processes ; Protons ; Sodium ; Sodium bicarbonate ; Sodium sulfite ; Sulfite ; Sulfur ; Sulfur dioxide ; Sulphur ; Suspension ; Transformations ; 亚硫酸盐 ; 小球藻 ; 应变 ; 理化效应 ; 硫酸盐浓度 ; 脂质含量 ; 藻类生长 ; 转化效率</subject><ispartof>Chinese journal of oceanology and limnology, 2014-11, Vol.32 (6), p.1288-1296</ispartof><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-d005edaa9167dd76250f576dfd723b26a08a42b788a4ba17f62a664188cfffd23</citedby><cites>FETCH-LOGICAL-c424t-d005edaa9167dd76250f576dfd723b26a08a42b788a4ba17f62a664188cfffd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84119X/84119X.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1618067114/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1618067114?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,43659,43787,43805,43953,44067,64385,64389,72469,74104,74283,74302,74473,74590</link.rule.ids></links><search><creatorcontrib>Liang, Fang</creatorcontrib><creatorcontrib>Wen, Xiaobin</creatorcontrib><creatorcontrib>Luo, Liming</creatorcontrib><creatorcontrib>Geng, Yahong</creatorcontrib><creatorcontrib>Li, Yeguang</creatorcontrib><title>Physicochemical effects on sulfite transformation in a lipid- rich Chlorella sp. strain</title><title>Chinese journal of oceanology and limnology</title><addtitle>Chin. J. Ocean. Limnol</addtitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><description>SO₂ is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO₂ from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m²·s), NaHCO₃ concentration of 6 g/L, initial cell density (OD₅₄₀) of 0.8 and pH of 9–10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO²⁻ ₃ to SO²⁻ ₄, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO₂, assuming there is adequate control of the pH.</description><subject>air</subject><subject>Algae</subject><subject>Algal growth</subject><subject>biodiesel</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biology</subject><subject>Cell density</subject><subject>Chlorella</subject><subject>culture media</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>fatty acid composition</subject><subject>Fatty acids</subject><subject>feedstocks</subject><subject>Flue gas</subject><subject>Genetic transformation</subject><subject>Growth</subject><subject>Light intensity</subject><subject>lipid content</subject><subject>Lipids</subject><subject>Luminous intensity</subject><subject>Marine biology</subject><subject>Mass production</subject><subject>microalgae</subject><subject>Oceanography</subject><subject>oxygen</subject><subject>pH effects</subject><subject>Physicochemical processes</subject><subject>Protons</subject><subject>Sodium</subject><subject>Sodium bicarbonate</subject><subject>Sodium sulfite</subject><subject>Sulfite</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><subject>Sulphur</subject><subject>Suspension</subject><subject>Transformations</subject><subject>亚硫酸盐</subject><subject>小球藻</subject><subject>应变</subject><subject>理化效应</subject><subject>硫酸盐浓度</subject><subject>脂质含量</subject><subject>藻类生长</subject><subject>转化效率</subject><issn>0254-4059</issn><issn>2096-5508</issn><issn>1993-5005</issn><issn>2523-3521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE2LFDEQhoMoOK7-AE8GvXjJmqTz0TnK4BcsKOjiMWTSyXSWns5sqgd2_7019CLiYU8FxfNWPbyEvBb8UnBuPwDnneoYF5op0XF294RshHMd05zrp2TDpVZMce2ekxcAN0g7xd2G_P4x3kOJNY7pUGKYaMo5xQVonSmcplyWRJcWZsi1HcJScF1mGuhUjmVgtJU40u041ZamKVA4XlJAvMwvybMcJkivHuYFuf786df2K7v6_uXb9uMVi0qqhQ1ol4YQnDB2GKyRmmdtzZAHK7udNIH3Qcmd7XHsgrDZyGCMEn0fc86D7C7I-_XusdXbU4LFHwrEs8yc6gm8MNK6XlntEH33H3pTT21GO6REz40VQiElViq2CtBS9sdWDqHde8H9uWq_Vu2xan-u2t9hRq4ZQHbep_bP5UdCb9ZQDtWHfSvgr39KBDjyqpP2UQJVtUDi7YPsWOf9Lf7-a2uMdMY6I7s_KvGeyQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Liang, Fang</creator><creator>Wen, Xiaobin</creator><creator>Luo, Liming</creator><creator>Geng, Yahong</creator><creator>Li, Yeguang</creator><general>Springer-Verlag</general><general>Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>KL.</scope><scope>L.F</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20141101</creationdate><title>Physicochemical effects on sulfite transformation in a lipid- rich Chlorella sp. strain</title><author>Liang, Fang ; Wen, Xiaobin ; Luo, Liming ; Geng, Yahong ; Li, Yeguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-d005edaa9167dd76250f576dfd723b26a08a42b788a4ba17f62a664188cfffd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>air</topic><topic>Algae</topic><topic>Algal growth</topic><topic>biodiesel</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biology</topic><topic>Cell density</topic><topic>Chlorella</topic><topic>culture media</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>fatty acid composition</topic><topic>Fatty acids</topic><topic>feedstocks</topic><topic>Flue gas</topic><topic>Genetic transformation</topic><topic>Growth</topic><topic>Light intensity</topic><topic>lipid content</topic><topic>Lipids</topic><topic>Luminous intensity</topic><topic>Marine biology</topic><topic>Mass production</topic><topic>microalgae</topic><topic>Oceanography</topic><topic>oxygen</topic><topic>pH effects</topic><topic>Physicochemical processes</topic><topic>Protons</topic><topic>Sodium</topic><topic>Sodium bicarbonate</topic><topic>Sodium sulfite</topic><topic>Sulfite</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><topic>Sulphur</topic><topic>Suspension</topic><topic>Transformations</topic><topic>亚硫酸盐</topic><topic>小球藻</topic><topic>应变</topic><topic>理化效应</topic><topic>硫酸盐浓度</topic><topic>脂质含量</topic><topic>藻类生长</topic><topic>转化效率</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Fang</creatorcontrib><creatorcontrib>Wen, Xiaobin</creatorcontrib><creatorcontrib>Luo, Liming</creatorcontrib><creatorcontrib>Geng, Yahong</creatorcontrib><creatorcontrib>Li, Yeguang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chinese journal of oceanology and limnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Fang</au><au>Wen, Xiaobin</au><au>Luo, Liming</au><au>Geng, Yahong</au><au>Li, Yeguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical effects on sulfite transformation in a lipid- rich Chlorella sp. strain</atitle><jtitle>Chinese journal of oceanology and limnology</jtitle><stitle>Chin. J. Ocean. Limnol</stitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>32</volume><issue>6</issue><spage>1288</spage><epage>1296</epage><pages>1288-1296</pages><issn>0254-4059</issn><issn>2096-5508</issn><eissn>1993-5005</eissn><eissn>2523-3521</eissn><abstract>SO₂ is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO₂ from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m²·s), NaHCO₃ concentration of 6 g/L, initial cell density (OD₅₄₀) of 0.8 and pH of 9–10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO²⁻ ₃ to SO²⁻ ₄, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO₂, assuming there is adequate control of the pH.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00343-015-4130-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-4059
ispartof Chinese journal of oceanology and limnology, 2014-11, Vol.32 (6), p.1288-1296
issn 0254-4059
2096-5508
1993-5005
2523-3521
language eng
recordid cdi_proquest_journals_1618067114
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; SpringerNature Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects air
Algae
Algal growth
biodiesel
Biodiesel fuels
Biofuels
Biology
Cell density
Chlorella
culture media
Earth and Environmental Science
Earth Sciences
fatty acid composition
Fatty acids
feedstocks
Flue gas
Genetic transformation
Growth
Light intensity
lipid content
Lipids
Luminous intensity
Marine biology
Mass production
microalgae
Oceanography
oxygen
pH effects
Physicochemical processes
Protons
Sodium
Sodium bicarbonate
Sodium sulfite
Sulfite
Sulfur
Sulfur dioxide
Sulphur
Suspension
Transformations
亚硫酸盐
小球藻
应变
理化效应
硫酸盐浓度
脂质含量
藻类生长
转化效率
title Physicochemical effects on sulfite transformation in a lipid- rich Chlorella sp. strain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20effects%20on%20sulfite%20transformation%20in%20a%20lipid-%20rich%20Chlorella%20sp.%20strain&rft.jtitle=Chinese%20journal%20of%20oceanology%20and%20limnology&rft.au=Liang,%20Fang&rft.date=2014-11-01&rft.volume=32&rft.issue=6&rft.spage=1288&rft.epage=1296&rft.pages=1288-1296&rft.issn=0254-4059&rft.eissn=1993-5005&rft_id=info:doi/10.1007/s00343-015-4130-x&rft_dat=%3Cproquest_cross%3E1627984759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618067114&rft_id=info:pmid/&rft_cqvip_id=662967962&rfr_iscdi=true