A Quantum-Statistical Approach Toward Robot Learning by Demonstration

Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2012-12, Vol.28 (6), p.1371-1381
Hauptverfasser: Chatzis, S. P., Korkinof, D., Demiris, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1381
container_issue 6
container_start_page 1371
container_title IEEE transactions on robotics
container_volume 28
creator Chatzis, S. P.
Korkinof, D.
Demiris, Y.
description Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.
doi_str_mv 10.1109/TRO.2012.2203055
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1616174511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220902</ieee_id><sourcerecordid>3470837841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrd4FLwvicevkc5NjqfUDCsVazyHZzeqWdlOTFOm_N6VF5jAD896bNw-hWwwjjEE9LhfzEQFMRoQABc7P0AArhktgQp7nmXNSUlDyEl3FuAIgTAEdoOm4eN-ZPu025UcyqYupq826GG-3wZv6u1j6XxOaYuGtT8XMmdB3_Vdh98WT2_g-ppA5vr9GF61ZR3dz6kP0-TxdTl7L2fzlbTKelTUVNJWmddwxTChQDNaKyhIqa0tM1eLaOo6BMsWtkIw02bDAlljWVKpRsrEOCB2i-6NudvezczHpld-FPp_UWOSqGMc4o-CIqoOPMbhWb0O3MWGvMehDWDqHpQ9h6VNYmfJwEjYx_98G09dd_OcRSYSshMy4uyOuc879r0WWUdneH6SbcSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616174511</pqid></control><display><type>article</type><title>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</title><source>IEEE Electronic Library (IEL)</source><creator>Chatzis, S. P. ; Korkinof, D. ; Demiris, Y.</creator><creatorcontrib>Chatzis, S. P. ; Korkinof, D. ; Demiris, Y.</creatorcontrib><description>Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2012.2203055</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Experiments ; Gaussian mixture model ; Learning ; Learning and adaptive systems ; Machine learning ; Modelling and identification ; Predictive models ; Quantum mechanics ; Quantum physics ; Quantum statistics ; robot learning by demonstration ; Robotics ; Robots ; statistical machine learning ; Statistics ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2012-12, Vol.28 (6), p.1371-1381</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</citedby><cites>FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28268768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatzis, S. P.</creatorcontrib><creatorcontrib>Korkinof, D.</creatorcontrib><creatorcontrib>Demiris, Y.</creatorcontrib><title>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Gaussian mixture model</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Machine learning</subject><subject>Modelling and identification</subject><subject>Predictive models</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum statistics</subject><subject>robot learning by demonstration</subject><subject>Robotics</subject><subject>Robots</subject><subject>statistical machine learning</subject><subject>Statistics</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1LAzEQDaJgrd4FLwvicevkc5NjqfUDCsVazyHZzeqWdlOTFOm_N6VF5jAD896bNw-hWwwjjEE9LhfzEQFMRoQABc7P0AArhktgQp7nmXNSUlDyEl3FuAIgTAEdoOm4eN-ZPu025UcyqYupq826GG-3wZv6u1j6XxOaYuGtT8XMmdB3_Vdh98WT2_g-ppA5vr9GF61ZR3dz6kP0-TxdTl7L2fzlbTKelTUVNJWmddwxTChQDNaKyhIqa0tM1eLaOo6BMsWtkIw02bDAlljWVKpRsrEOCB2i-6NudvezczHpld-FPp_UWOSqGMc4o-CIqoOPMbhWb0O3MWGvMehDWDqHpQ9h6VNYmfJwEjYx_98G09dd_OcRSYSshMy4uyOuc879r0WWUdneH6SbcSc</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Chatzis, S. P.</creator><creator>Korkinof, D.</creator><creator>Demiris, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121201</creationdate><title>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</title><author>Chatzis, S. P. ; Korkinof, D. ; Demiris, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Gaussian mixture model</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Machine learning</topic><topic>Modelling and identification</topic><topic>Predictive models</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum statistics</topic><topic>robot learning by demonstration</topic><topic>Robotics</topic><topic>Robots</topic><topic>statistical machine learning</topic><topic>Statistics</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatzis, S. P.</creatorcontrib><creatorcontrib>Korkinof, D.</creatorcontrib><creatorcontrib>Demiris, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chatzis, S. P.</au><au>Korkinof, D.</au><au>Demiris, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>6</issue><spage>1371</spage><epage>1381</epage><pages>1371-1381</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2012.2203055</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2012-12, Vol.28 (6), p.1371-1381
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_1616174511
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Experiments
Gaussian mixture model
Learning
Learning and adaptive systems
Machine learning
Modelling and identification
Predictive models
Quantum mechanics
Quantum physics
Quantum statistics
robot learning by demonstration
Robotics
Robots
statistical machine learning
Statistics
Trajectory
title A Quantum-Statistical Approach Toward Robot Learning by Demonstration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantum-Statistical%20Approach%20Toward%20Robot%20Learning%20by%20Demonstration&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Chatzis,%20S.%20P.&rft.date=2012-12-01&rft.volume=28&rft.issue=6&rft.spage=1371&rft.epage=1381&rft.pages=1371-1381&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2012.2203055&rft_dat=%3Cproquest_RIE%3E3470837841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616174511&rft_id=info:pmid/&rft_ieee_id=6220902&rfr_iscdi=true