A Quantum-Statistical Approach Toward Robot Learning by Demonstration
Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2012-12, Vol.28 (6), p.1371-1381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1381 |
---|---|
container_issue | 6 |
container_start_page | 1371 |
container_title | IEEE transactions on robotics |
container_volume | 28 |
creator | Chatzis, S. P. Korkinof, D. Demiris, Y. |
description | Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach. |
doi_str_mv | 10.1109/TRO.2012.2203055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1616174511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220902</ieee_id><sourcerecordid>3470837841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrd4FLwvicevkc5NjqfUDCsVazyHZzeqWdlOTFOm_N6VF5jAD896bNw-hWwwjjEE9LhfzEQFMRoQABc7P0AArhktgQp7nmXNSUlDyEl3FuAIgTAEdoOm4eN-ZPu025UcyqYupq826GG-3wZv6u1j6XxOaYuGtT8XMmdB3_Vdh98WT2_g-ppA5vr9GF61ZR3dz6kP0-TxdTl7L2fzlbTKelTUVNJWmddwxTChQDNaKyhIqa0tM1eLaOo6BMsWtkIw02bDAlljWVKpRsrEOCB2i-6NudvezczHpld-FPp_UWOSqGMc4o-CIqoOPMbhWb0O3MWGvMehDWDqHpQ9h6VNYmfJwEjYx_98G09dd_OcRSYSshMy4uyOuc879r0WWUdneH6SbcSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616174511</pqid></control><display><type>article</type><title>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</title><source>IEEE Electronic Library (IEL)</source><creator>Chatzis, S. P. ; Korkinof, D. ; Demiris, Y.</creator><creatorcontrib>Chatzis, S. P. ; Korkinof, D. ; Demiris, Y.</creatorcontrib><description>Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2012.2203055</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Experiments ; Gaussian mixture model ; Learning ; Learning and adaptive systems ; Machine learning ; Modelling and identification ; Predictive models ; Quantum mechanics ; Quantum physics ; Quantum statistics ; robot learning by demonstration ; Robotics ; Robots ; statistical machine learning ; Statistics ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2012-12, Vol.28 (6), p.1371-1381</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</citedby><cites>FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28268768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatzis, S. P.</creatorcontrib><creatorcontrib>Korkinof, D.</creatorcontrib><creatorcontrib>Demiris, Y.</creatorcontrib><title>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Gaussian mixture model</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Machine learning</subject><subject>Modelling and identification</subject><subject>Predictive models</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum statistics</subject><subject>robot learning by demonstration</subject><subject>Robotics</subject><subject>Robots</subject><subject>statistical machine learning</subject><subject>Statistics</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1LAzEQDaJgrd4FLwvicevkc5NjqfUDCsVazyHZzeqWdlOTFOm_N6VF5jAD896bNw-hWwwjjEE9LhfzEQFMRoQABc7P0AArhktgQp7nmXNSUlDyEl3FuAIgTAEdoOm4eN-ZPu025UcyqYupq826GG-3wZv6u1j6XxOaYuGtT8XMmdB3_Vdh98WT2_g-ppA5vr9GF61ZR3dz6kP0-TxdTl7L2fzlbTKelTUVNJWmddwxTChQDNaKyhIqa0tM1eLaOo6BMsWtkIw02bDAlljWVKpRsrEOCB2i-6NudvezczHpld-FPp_UWOSqGMc4o-CIqoOPMbhWb0O3MWGvMehDWDqHpQ9h6VNYmfJwEjYx_98G09dd_OcRSYSshMy4uyOuc879r0WWUdneH6SbcSc</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Chatzis, S. P.</creator><creator>Korkinof, D.</creator><creator>Demiris, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121201</creationdate><title>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</title><author>Chatzis, S. P. ; Korkinof, D. ; Demiris, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-afe5e41230310bb67b238cb2a7f1cbe5103495b6842d15561b2b4d79d98dbe023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Gaussian mixture model</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Machine learning</topic><topic>Modelling and identification</topic><topic>Predictive models</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum statistics</topic><topic>robot learning by demonstration</topic><topic>Robotics</topic><topic>Robots</topic><topic>statistical machine learning</topic><topic>Statistics</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatzis, S. P.</creatorcontrib><creatorcontrib>Korkinof, D.</creatorcontrib><creatorcontrib>Demiris, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chatzis, S. P.</au><au>Korkinof, D.</au><au>Demiris, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantum-Statistical Approach Toward Robot Learning by Demonstration</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>6</issue><spage>1371</spage><epage>1381</epage><pages>1371-1381</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2012.2203055</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2012-12, Vol.28 (6), p.1371-1381 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_1616174511 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Control theory. Systems Exact sciences and technology Experiments Gaussian mixture model Learning Learning and adaptive systems Machine learning Modelling and identification Predictive models Quantum mechanics Quantum physics Quantum statistics robot learning by demonstration Robotics Robots statistical machine learning Statistics Trajectory |
title | A Quantum-Statistical Approach Toward Robot Learning by Demonstration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantum-Statistical%20Approach%20Toward%20Robot%20Learning%20by%20Demonstration&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Chatzis,%20S.%20P.&rft.date=2012-12-01&rft.volume=28&rft.issue=6&rft.spage=1371&rft.epage=1381&rft.pages=1371-1381&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2012.2203055&rft_dat=%3Cproquest_RIE%3E3470837841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616174511&rft_id=info:pmid/&rft_ieee_id=6220902&rfr_iscdi=true |