Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters
This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only...
Gespeichert in:
Veröffentlicht in: | Revista Facultad de Ingeniería 2012-06 (63), p.141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | spa |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 63 |
container_start_page | 141 |
container_title | Revista Facultad de Ingeniería |
container_volume | |
creator | Villalba, Jesús D Gomez, Ivan D Laier, José E |
description | This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1613619937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3464535931</sourcerecordid><originalsourceid>FETCH-proquest_journals_16136199373</originalsourceid><addsrcrecordid>eNqNjk1Ow0AMRkcIJMrPHSyxjphMQkjXFMQB2Fduxo1ckpkynoDCbTgCQpwgF2OIumDJ6vtsWe_5SC1MaUxm6rI8VgudG51VptCn6kxkp_VNXel6ob5XFKlpePpyYAksTp8eyMErtygwRO74HZ31EMiSgKMheIddqhgib7nheRhhj2H66CkGL2DZpc6Nl-sV9tgm7q8lsnfADjaEvcBmhEHYtX9AM36O-ObDc3I4C3Z0mFhpnRSYDBTkQp1ssRO6POS5unq4f7p7zPbBvwwkcb3zQ0h_yjqv8qLKl8vitvjf1Q8Eo2m2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613619937</pqid></control><display><type>article</type><title>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Villalba, Jesús D ; Gomez, Ivan D ; Laier, José E</creator><creatorcontrib>Villalba, Jesús D ; Gomez, Ivan D ; Laier, José E</creatorcontrib><description>This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.</description><identifier>ISSN: 0120-6230</identifier><identifier>EISSN: 2422-2844</identifier><language>spa</language><publisher>Medellín: Universidad de Antioquía</publisher><ispartof>Revista Facultad de Ingeniería, 2012-06 (63), p.141</ispartof><rights>Copyright Universidad de Antioquia Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Villalba, Jesús D</creatorcontrib><creatorcontrib>Gomez, Ivan D</creatorcontrib><creatorcontrib>Laier, José E</creatorcontrib><title>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</title><title>Revista Facultad de Ingeniería</title><description>This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.</description><issn>0120-6230</issn><issn>2422-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjk1Ow0AMRkcIJMrPHSyxjphMQkjXFMQB2Fduxo1ckpkynoDCbTgCQpwgF2OIumDJ6vtsWe_5SC1MaUxm6rI8VgudG51VptCn6kxkp_VNXel6ob5XFKlpePpyYAksTp8eyMErtygwRO74HZ31EMiSgKMheIddqhgib7nheRhhj2H66CkGL2DZpc6Nl-sV9tgm7q8lsnfADjaEvcBmhEHYtX9AM36O-ObDc3I4C3Z0mFhpnRSYDBTkQp1ssRO6POS5unq4f7p7zPbBvwwkcb3zQ0h_yjqv8qLKl8vitvjf1Q8Eo2m2</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Villalba, Jesús D</creator><creator>Gomez, Ivan D</creator><creator>Laier, José E</creator><general>Universidad de Antioquía</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120601</creationdate><title>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</title><author>Villalba, Jesús D ; Gomez, Ivan D ; Laier, José E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_16136199373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>spa</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villalba, Jesús D</creatorcontrib><creatorcontrib>Gomez, Ivan D</creatorcontrib><creatorcontrib>Laier, José E</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Revista Facultad de Ingeniería</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villalba, Jesús D</au><au>Gomez, Ivan D</au><au>Laier, José E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</atitle><jtitle>Revista Facultad de Ingeniería</jtitle><date>2012-06-01</date><risdate>2012</risdate><issue>63</issue><spage>141</spage><pages>141-</pages><issn>0120-6230</issn><eissn>2422-2844</eissn><abstract>This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.</abstract><cop>Medellín</cop><pub>Universidad de Antioquía</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0120-6230 |
ispartof | Revista Facultad de Ingeniería, 2012-06 (63), p.141 |
issn | 0120-6230 2422-2844 |
language | spa |
recordid | cdi_proquest_journals_1613619937 |
source | EZB-FREE-00999 freely available EZB journals |
title | Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecci%C3%B3n%20de%20da%C3%B1o%20en%20vigas%20utilizando%20redes%20neuronales%20artificiales%20y%20par%C3%A1metros%20din%C3%A1micos/Damage%20detection%20in%20beams%20by%20using%20artificial%20neural%20networks%20and%20dynamical%20parameters&rft.jtitle=Revista%20Facultad%20de%20Ingenier%C3%ADa&rft.au=Villalba,%20Jes%C3%BAs%20D&rft.date=2012-06-01&rft.issue=63&rft.spage=141&rft.pages=141-&rft.issn=0120-6230&rft.eissn=2422-2844&rft_id=info:doi/&rft_dat=%3Cproquest%3E3464535931%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613619937&rft_id=info:pmid/&rfr_iscdi=true |