Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters

This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Facultad de Ingeniería 2012-06 (63), p.141
Hauptverfasser: Villalba, Jesús D, Gomez, Ivan D, Laier, José E
Format: Artikel
Sprache:spa
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 63
container_start_page 141
container_title Revista Facultad de Ingeniería
container_volume
creator Villalba, Jesús D
Gomez, Ivan D
Laier, José E
description This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1613619937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3464535931</sourcerecordid><originalsourceid>FETCH-proquest_journals_16136199373</originalsourceid><addsrcrecordid>eNqNjk1Ow0AMRkcIJMrPHSyxjphMQkjXFMQB2Fduxo1ckpkynoDCbTgCQpwgF2OIumDJ6vtsWe_5SC1MaUxm6rI8VgudG51VptCn6kxkp_VNXel6ob5XFKlpePpyYAksTp8eyMErtygwRO74HZ31EMiSgKMheIddqhgib7nheRhhj2H66CkGL2DZpc6Nl-sV9tgm7q8lsnfADjaEvcBmhEHYtX9AM36O-ObDc3I4C3Z0mFhpnRSYDBTkQp1ssRO6POS5unq4f7p7zPbBvwwkcb3zQ0h_yjqv8qLKl8vitvjf1Q8Eo2m2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613619937</pqid></control><display><type>article</type><title>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Villalba, Jesús D ; Gomez, Ivan D ; Laier, José E</creator><creatorcontrib>Villalba, Jesús D ; Gomez, Ivan D ; Laier, José E</creatorcontrib><description>This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.</description><identifier>ISSN: 0120-6230</identifier><identifier>EISSN: 2422-2844</identifier><language>spa</language><publisher>Medellín: Universidad de Antioquía</publisher><ispartof>Revista Facultad de Ingeniería, 2012-06 (63), p.141</ispartof><rights>Copyright Universidad de Antioquia Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Villalba, Jesús D</creatorcontrib><creatorcontrib>Gomez, Ivan D</creatorcontrib><creatorcontrib>Laier, José E</creatorcontrib><title>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</title><title>Revista Facultad de Ingeniería</title><description>This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.</description><issn>0120-6230</issn><issn>2422-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjk1Ow0AMRkcIJMrPHSyxjphMQkjXFMQB2Fduxo1ckpkynoDCbTgCQpwgF2OIumDJ6vtsWe_5SC1MaUxm6rI8VgudG51VptCn6kxkp_VNXel6ob5XFKlpePpyYAksTp8eyMErtygwRO74HZ31EMiSgKMheIddqhgib7nheRhhj2H66CkGL2DZpc6Nl-sV9tgm7q8lsnfADjaEvcBmhEHYtX9AM36O-ObDc3I4C3Z0mFhpnRSYDBTkQp1ssRO6POS5unq4f7p7zPbBvwwkcb3zQ0h_yjqv8qLKl8vitvjf1Q8Eo2m2</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Villalba, Jesús D</creator><creator>Gomez, Ivan D</creator><creator>Laier, José E</creator><general>Universidad de Antioquía</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120601</creationdate><title>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</title><author>Villalba, Jesús D ; Gomez, Ivan D ; Laier, José E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_16136199373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>spa</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villalba, Jesús D</creatorcontrib><creatorcontrib>Gomez, Ivan D</creatorcontrib><creatorcontrib>Laier, José E</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Revista Facultad de Ingeniería</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villalba, Jesús D</au><au>Gomez, Ivan D</au><au>Laier, José E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters</atitle><jtitle>Revista Facultad de Ingeniería</jtitle><date>2012-06-01</date><risdate>2012</risdate><issue>63</issue><spage>141</spage><pages>141-</pages><issn>0120-6230</issn><eissn>2422-2844</eissn><abstract>This paper presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.</abstract><cop>Medellín</cop><pub>Universidad de Antioquía</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-6230
ispartof Revista Facultad de Ingeniería, 2012-06 (63), p.141
issn 0120-6230
2422-2844
language spa
recordid cdi_proquest_journals_1613619937
source EZB-FREE-00999 freely available EZB journals
title Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos/Damage detection in beams by using artificial neural networks and dynamical parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecci%C3%B3n%20de%20da%C3%B1o%20en%20vigas%20utilizando%20redes%20neuronales%20artificiales%20y%20par%C3%A1metros%20din%C3%A1micos/Damage%20detection%20in%20beams%20by%20using%20artificial%20neural%20networks%20and%20dynamical%20parameters&rft.jtitle=Revista%20Facultad%20de%20Ingenier%C3%ADa&rft.au=Villalba,%20Jes%C3%BAs%20D&rft.date=2012-06-01&rft.issue=63&rft.spage=141&rft.pages=141-&rft.issn=0120-6230&rft.eissn=2422-2844&rft_id=info:doi/&rft_dat=%3Cproquest%3E3464535931%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613619937&rft_id=info:pmid/&rfr_iscdi=true