Grey Relational Analysis and Neural Network Forecasting of REIT returns
This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2014-11, Vol.14 (11), p.2033-2044 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2044 |
---|---|
container_issue | 11 |
container_start_page | 2033 |
container_title | Quantitative finance |
container_volume | 14 |
creator | Chen, Jo-Hui Chang, Ting-Tzu Ho, Chao-Rung Diaz, John Francis |
description | This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy. |
doi_str_mv | 10.1080/14697688.2013.816765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1611662887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3460986131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</originalsourceid><addsrcrecordid>eNp9UF1LwzAUDaLgnP4DHwI-d97btGn6JGPMORgTxnwOWZtIZ9fMJEP6782o-ujLvZfD-eAeQu4RJggCHjHjZcGFmKSAbCKQFzy_IKMznBS85Jd_txDX5Mb7PQDmAOWILBZO93SjWxUa26mWTuPofeOp6mq61icXsbUOX9Z90GfrdKV8aLp3ag3dzJdb6nQ4uc7fkiujWq_vfvaYvD3Pt7OXZPW6WM6mq6TKAEOSazCAIqtThFRBxblGAaYuhdrtMlOWecaEECbVtTHM5EVVYso5KDQsZzvNxuRh8D06-3nSPsi9jfkxUiJH5DwVooisbGBVznrvtJFH1xyU6yWCPFcmfyuT58rkUFmUPQ2ypjPWHVR8uq1lUH1rnXGqqxov2b8O31sNcXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611662887</pqid></control><display><type>article</type><title>Grey Relational Analysis and Neural Network Forecasting of REIT returns</title><source>EBSCOhost Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Chen, Jo-Hui ; Chang, Ting-Tzu ; Ho, Chao-Rung ; Diaz, John Francis</creator><creatorcontrib>Chen, Jo-Hui ; Chang, Ting-Tzu ; Ho, Chao-Rung ; Diaz, John Francis</creatorcontrib><description>This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2013.816765</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Artificial Neural Network (ANN) ; Back-propagation Neural Network (BPN) ; Grey Relational Analysis (GRA) ; Indexes ; Measurement techniques ; Neural networks ; Rates of return ; Real estate investment trust (REIT) ; REITs ; Risk management ; Studies</subject><ispartof>Quantitative finance, 2014-11, Vol.14 (11), p.2033-2044</ispartof><rights>2013 Taylor & Francis 2013</rights><rights>Copyright American Institute of Physics 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</citedby><cites>FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2013.816765$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2013.816765$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Chen, Jo-Hui</creatorcontrib><creatorcontrib>Chang, Ting-Tzu</creatorcontrib><creatorcontrib>Ho, Chao-Rung</creatorcontrib><creatorcontrib>Diaz, John Francis</creatorcontrib><title>Grey Relational Analysis and Neural Network Forecasting of REIT returns</title><title>Quantitative finance</title><description>This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.</description><subject>Artificial Neural Network (ANN)</subject><subject>Back-propagation Neural Network (BPN)</subject><subject>Grey Relational Analysis (GRA)</subject><subject>Indexes</subject><subject>Measurement techniques</subject><subject>Neural networks</subject><subject>Rates of return</subject><subject>Real estate investment trust (REIT)</subject><subject>REITs</subject><subject>Risk management</subject><subject>Studies</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAUDaLgnP4DHwI-d97btGn6JGPMORgTxnwOWZtIZ9fMJEP6782o-ujLvZfD-eAeQu4RJggCHjHjZcGFmKSAbCKQFzy_IKMznBS85Jd_txDX5Mb7PQDmAOWILBZO93SjWxUa26mWTuPofeOp6mq61icXsbUOX9Z90GfrdKV8aLp3ag3dzJdb6nQ4uc7fkiujWq_vfvaYvD3Pt7OXZPW6WM6mq6TKAEOSazCAIqtThFRBxblGAaYuhdrtMlOWecaEECbVtTHM5EVVYso5KDQsZzvNxuRh8D06-3nSPsi9jfkxUiJH5DwVooisbGBVznrvtJFH1xyU6yWCPFcmfyuT58rkUFmUPQ2ypjPWHVR8uq1lUH1rnXGqqxov2b8O31sNcXM</recordid><startdate>20141102</startdate><enddate>20141102</enddate><creator>Chen, Jo-Hui</creator><creator>Chang, Ting-Tzu</creator><creator>Ho, Chao-Rung</creator><creator>Diaz, John Francis</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141102</creationdate><title>Grey Relational Analysis and Neural Network Forecasting of REIT returns</title><author>Chen, Jo-Hui ; Chang, Ting-Tzu ; Ho, Chao-Rung ; Diaz, John Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Neural Network (ANN)</topic><topic>Back-propagation Neural Network (BPN)</topic><topic>Grey Relational Analysis (GRA)</topic><topic>Indexes</topic><topic>Measurement techniques</topic><topic>Neural networks</topic><topic>Rates of return</topic><topic>Real estate investment trust (REIT)</topic><topic>REITs</topic><topic>Risk management</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jo-Hui</creatorcontrib><creatorcontrib>Chang, Ting-Tzu</creatorcontrib><creatorcontrib>Ho, Chao-Rung</creatorcontrib><creatorcontrib>Diaz, John Francis</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jo-Hui</au><au>Chang, Ting-Tzu</au><au>Ho, Chao-Rung</au><au>Diaz, John Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grey Relational Analysis and Neural Network Forecasting of REIT returns</atitle><jtitle>Quantitative finance</jtitle><date>2014-11-02</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>2033</spage><epage>2044</epage><pages>2033-2044</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2013.816765</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2014-11, Vol.14 (11), p.2033-2044 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_proquest_journals_1611662887 |
source | EBSCOhost Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | Artificial Neural Network (ANN) Back-propagation Neural Network (BPN) Grey Relational Analysis (GRA) Indexes Measurement techniques Neural networks Rates of return Real estate investment trust (REIT) REITs Risk management Studies |
title | Grey Relational Analysis and Neural Network Forecasting of REIT returns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grey%20Relational%20Analysis%20and%20Neural%20Network%20Forecasting%20of%20REIT%20returns&rft.jtitle=Quantitative%20finance&rft.au=Chen,%20Jo-Hui&rft.date=2014-11-02&rft.volume=14&rft.issue=11&rft.spage=2033&rft.epage=2044&rft.pages=2033-2044&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2013.816765&rft_dat=%3Cproquest_cross%3E3460986131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611662887&rft_id=info:pmid/&rfr_iscdi=true |