Grey Relational Analysis and Neural Network Forecasting of REIT returns

This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2014-11, Vol.14 (11), p.2033-2044
Hauptverfasser: Chen, Jo-Hui, Chang, Ting-Tzu, Ho, Chao-Rung, Diaz, John Francis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2044
container_issue 11
container_start_page 2033
container_title Quantitative finance
container_volume 14
creator Chen, Jo-Hui
Chang, Ting-Tzu
Ho, Chao-Rung
Diaz, John Francis
description This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.
doi_str_mv 10.1080/14697688.2013.816765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1611662887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3460986131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</originalsourceid><addsrcrecordid>eNp9UF1LwzAUDaLgnP4DHwI-d97btGn6JGPMORgTxnwOWZtIZ9fMJEP6782o-ujLvZfD-eAeQu4RJggCHjHjZcGFmKSAbCKQFzy_IKMznBS85Jd_txDX5Mb7PQDmAOWILBZO93SjWxUa26mWTuPofeOp6mq61icXsbUOX9Z90GfrdKV8aLp3ag3dzJdb6nQ4uc7fkiujWq_vfvaYvD3Pt7OXZPW6WM6mq6TKAEOSazCAIqtThFRBxblGAaYuhdrtMlOWecaEECbVtTHM5EVVYso5KDQsZzvNxuRh8D06-3nSPsi9jfkxUiJH5DwVooisbGBVznrvtJFH1xyU6yWCPFcmfyuT58rkUFmUPQ2ypjPWHVR8uq1lUH1rnXGqqxov2b8O31sNcXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611662887</pqid></control><display><type>article</type><title>Grey Relational Analysis and Neural Network Forecasting of REIT returns</title><source>EBSCOhost Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Chen, Jo-Hui ; Chang, Ting-Tzu ; Ho, Chao-Rung ; Diaz, John Francis</creator><creatorcontrib>Chen, Jo-Hui ; Chang, Ting-Tzu ; Ho, Chao-Rung ; Diaz, John Francis</creatorcontrib><description>This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2013.816765</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Artificial Neural Network (ANN) ; Back-propagation Neural Network (BPN) ; Grey Relational Analysis (GRA) ; Indexes ; Measurement techniques ; Neural networks ; Rates of return ; Real estate investment trust (REIT) ; REITs ; Risk management ; Studies</subject><ispartof>Quantitative finance, 2014-11, Vol.14 (11), p.2033-2044</ispartof><rights>2013 Taylor &amp; Francis 2013</rights><rights>Copyright American Institute of Physics 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</citedby><cites>FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2013.816765$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2013.816765$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Chen, Jo-Hui</creatorcontrib><creatorcontrib>Chang, Ting-Tzu</creatorcontrib><creatorcontrib>Ho, Chao-Rung</creatorcontrib><creatorcontrib>Diaz, John Francis</creatorcontrib><title>Grey Relational Analysis and Neural Network Forecasting of REIT returns</title><title>Quantitative finance</title><description>This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.</description><subject>Artificial Neural Network (ANN)</subject><subject>Back-propagation Neural Network (BPN)</subject><subject>Grey Relational Analysis (GRA)</subject><subject>Indexes</subject><subject>Measurement techniques</subject><subject>Neural networks</subject><subject>Rates of return</subject><subject>Real estate investment trust (REIT)</subject><subject>REITs</subject><subject>Risk management</subject><subject>Studies</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAUDaLgnP4DHwI-d97btGn6JGPMORgTxnwOWZtIZ9fMJEP6782o-ujLvZfD-eAeQu4RJggCHjHjZcGFmKSAbCKQFzy_IKMznBS85Jd_txDX5Mb7PQDmAOWILBZO93SjWxUa26mWTuPofeOp6mq61icXsbUOX9Z90GfrdKV8aLp3ag3dzJdb6nQ4uc7fkiujWq_vfvaYvD3Pt7OXZPW6WM6mq6TKAEOSazCAIqtThFRBxblGAaYuhdrtMlOWecaEECbVtTHM5EVVYso5KDQsZzvNxuRh8D06-3nSPsi9jfkxUiJH5DwVooisbGBVznrvtJFH1xyU6yWCPFcmfyuT58rkUFmUPQ2ypjPWHVR8uq1lUH1rnXGqqxov2b8O31sNcXM</recordid><startdate>20141102</startdate><enddate>20141102</enddate><creator>Chen, Jo-Hui</creator><creator>Chang, Ting-Tzu</creator><creator>Ho, Chao-Rung</creator><creator>Diaz, John Francis</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141102</creationdate><title>Grey Relational Analysis and Neural Network Forecasting of REIT returns</title><author>Chen, Jo-Hui ; Chang, Ting-Tzu ; Ho, Chao-Rung ; Diaz, John Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5e0f0184d2102a0c66e180fd98abb4f99543888f2edff3f57c912660a1f353be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Neural Network (ANN)</topic><topic>Back-propagation Neural Network (BPN)</topic><topic>Grey Relational Analysis (GRA)</topic><topic>Indexes</topic><topic>Measurement techniques</topic><topic>Neural networks</topic><topic>Rates of return</topic><topic>Real estate investment trust (REIT)</topic><topic>REITs</topic><topic>Risk management</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jo-Hui</creatorcontrib><creatorcontrib>Chang, Ting-Tzu</creatorcontrib><creatorcontrib>Ho, Chao-Rung</creatorcontrib><creatorcontrib>Diaz, John Francis</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jo-Hui</au><au>Chang, Ting-Tzu</au><au>Ho, Chao-Rung</au><au>Diaz, John Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grey Relational Analysis and Neural Network Forecasting of REIT returns</atitle><jtitle>Quantitative finance</jtitle><date>2014-11-02</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>2033</spage><epage>2044</epage><pages>2033-2044</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>This study employs the Grey Relational Analysis (GRA) and Artificial Neural Network (ANN) to measure the impact of key elements on the forecasting performance of real estate investment trust (REIT) returns. To manage risks from a real estate price bubble, the findings of GRA suggest that the REIT is best influenced by industrial production index, lending rate, dividend yield, stock index and its own lagged performance. Consequently, this paper adjusts the parameters from GRA and inserts the key elements into the fitted ANN model by comparing the learning effect of the Back-propagation Neural Network (BPN). This study found that the ranking provided by the GRA is significant in correcting prediction errors using the learning outcome of the BPN. The neural network model proved to minimize error function and was able to adjust weighted values in order to enhance prediction accuracy.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2013.816765</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2014-11, Vol.14 (11), p.2033-2044
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_1611662887
source EBSCOhost Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Artificial Neural Network (ANN)
Back-propagation Neural Network (BPN)
Grey Relational Analysis (GRA)
Indexes
Measurement techniques
Neural networks
Rates of return
Real estate investment trust (REIT)
REITs
Risk management
Studies
title Grey Relational Analysis and Neural Network Forecasting of REIT returns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grey%20Relational%20Analysis%20and%20Neural%20Network%20Forecasting%20of%20REIT%20returns&rft.jtitle=Quantitative%20finance&rft.au=Chen,%20Jo-Hui&rft.date=2014-11-02&rft.volume=14&rft.issue=11&rft.spage=2033&rft.epage=2044&rft.pages=2033-2044&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2013.816765&rft_dat=%3Cproquest_cross%3E3460986131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611662887&rft_id=info:pmid/&rfr_iscdi=true