Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration

Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of applied ecology 2014-10, Vol.51 (5), p.1314-1325
Hauptverfasser: Fodrie, F. Joel, Rodriguez, Antonio B, Baillie, Christopher J, Brodeur, Michelle C, Coleman, Sara E, Gittman, Rachel K, Keller, Danielle A, Kenworthy, Matthew D, Poray, Abigail K, Ridge, Justin T, Theuerkauf, Ethan J, Lindquist, Niels. L, Arnott, Shelley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 5
container_start_page 1314
container_title The Journal of applied ecology
container_volume 51
creator Fodrie, F. Joel
Rodriguez, Antonio B
Baillie, Christopher J
Brodeur, Michelle C
Coleman, Sara E
Gittman, Rachel K
Keller, Danielle A
Kenworthy, Matthew D
Poray, Abigail K
Ridge, Justin T
Theuerkauf, Ethan J
Lindquist, Niels. L
Arnott, Shelley
description Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was
doi_str_mv 10.1111/1365-2664.12276
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1610142065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24032569</jstor_id><sourcerecordid>24032569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</originalsourceid><addsrcrecordid>eNqFkV9rHCEUxYfSQrdJn_tUKpQ-TnLV0R37Vpb0H4EG0jyL4-jG7axuvbMb9ov089bJpMljFRSu5_4O91hVbyic0bLOKZeiZlI2Z5SxpXxWLR4rz6sFAKN1q4C-rF4hbgBACc4X1Z_VYBCDJTuTTR_WWyQhEkNiOriBuHgIOcWti-PHUkeXxxDXxKfUkzvXERN7ssup39sxHMJ4JINDTBGJz2lLcrK_jgRvU3Z4L0UzjFuT8dZNLmMiXUhrF4t7ds6XA8eUzRhSPK1eeDOge_1wn1Q3ny9-rr7Wlz--fFt9uqytACZrRYWRAiyly46ppnfWGyNs37dcedsx4SyIhlGrmFUtY-CUsv2y4wzAtI3gJ9X7mVum-L0v_nqT9jkWS00lBdowkJPqfFbZnBCz83qXQxnkqCnoKXw9Ra2nqPV9-KXjwwPXoDWDzybagI9tTAGXLaiiE7PuLgzu-D-s_n518Y__du7bTJE9cRvgTMiJ-25-9yZps87F--aaARXl41vOyv4Lzh2o4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610142065</pqid></control><display><type>article</type><title>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fodrie, F. Joel ; Rodriguez, Antonio B ; Baillie, Christopher J ; Brodeur, Michelle C ; Coleman, Sara E ; Gittman, Rachel K ; Keller, Danielle A ; Kenworthy, Matthew D ; Poray, Abigail K ; Ridge, Justin T ; Theuerkauf, Ethan J ; Lindquist, Niels. L ; Arnott, Shelley</creator><creatorcontrib>Fodrie, F. Joel ; Rodriguez, Antonio B ; Baillie, Christopher J ; Brodeur, Michelle C ; Coleman, Sara E ; Gittman, Rachel K ; Keller, Danielle A ; Kenworthy, Matthew D ; Poray, Abigail K ; Ridge, Justin T ; Theuerkauf, Ethan J ; Lindquist, Niels. L ; Arnott, Shelley</creatorcontrib><description>Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was &lt;5% of the monthly tidal cycle. Synthesis and applications. The success of restoration initiatives involving habitat‐forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid‐to‐low intertidal). Our developing model proscribes a vertical ‘hot spot’ for restoration efforts to maximize biogenic reef fitness and production.</description><identifier>ISSN: 0021-8901</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/1365-2664.12276</identifier><identifier>CODEN: JAPEAI</identifier><language>eng</language><publisher>Oxford: Blackwell Scientific Publications</publisher><subject>adults ; Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; biofouling ; Biological and medical sciences ; biomass ; Brackish water ecosystems ; Coastal ecology ; competition ; Conservation, protection and management of environment and wildlife ; Coral reefs ; Crabs ; ecological restoration ; Environmental degradation: ecosystems survey and restoration ; Environmental restoration ; Food chains ; food webs ; Fundamental and applied biological sciences. Psychology ; Gastropoda ; General aspects ; growth ; Habitat conservation ; Habitats ; inundation–productivity gradient ; landscape ecology ; Marine ecology ; Marine management ; Oysters ; Predation ; Reefs ; Restoration ecology ; rocky intertidal ecology ; Salt marshes ; sea level ; seagrasses ; Shellfish ; shellfish reefs ; Spartina ; survival rate ; Synecology ; vertical zonation</subject><ispartof>The Journal of applied ecology, 2014-10, Vol.51 (5), p.1314-1325</ispartof><rights>2014 British Ecological Society</rights><rights>2014 The Authors. Journal of Applied Ecology © 2014 British Ecological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</citedby><cites>FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24032569$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24032569$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29036809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fodrie, F. Joel</creatorcontrib><creatorcontrib>Rodriguez, Antonio B</creatorcontrib><creatorcontrib>Baillie, Christopher J</creatorcontrib><creatorcontrib>Brodeur, Michelle C</creatorcontrib><creatorcontrib>Coleman, Sara E</creatorcontrib><creatorcontrib>Gittman, Rachel K</creatorcontrib><creatorcontrib>Keller, Danielle A</creatorcontrib><creatorcontrib>Kenworthy, Matthew D</creatorcontrib><creatorcontrib>Poray, Abigail K</creatorcontrib><creatorcontrib>Ridge, Justin T</creatorcontrib><creatorcontrib>Theuerkauf, Ethan J</creatorcontrib><creatorcontrib>Lindquist, Niels. L</creatorcontrib><creatorcontrib>Arnott, Shelley</creatorcontrib><title>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</title><title>The Journal of applied ecology</title><description>Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was &lt;5% of the monthly tidal cycle. Synthesis and applications. The success of restoration initiatives involving habitat‐forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid‐to‐low intertidal). Our developing model proscribes a vertical ‘hot spot’ for restoration efforts to maximize biogenic reef fitness and production.</description><subject>adults</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>biofouling</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Brackish water ecosystems</subject><subject>Coastal ecology</subject><subject>competition</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Coral reefs</subject><subject>Crabs</subject><subject>ecological restoration</subject><subject>Environmental degradation: ecosystems survey and restoration</subject><subject>Environmental restoration</subject><subject>Food chains</subject><subject>food webs</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastropoda</subject><subject>General aspects</subject><subject>growth</subject><subject>Habitat conservation</subject><subject>Habitats</subject><subject>inundation–productivity gradient</subject><subject>landscape ecology</subject><subject>Marine ecology</subject><subject>Marine management</subject><subject>Oysters</subject><subject>Predation</subject><subject>Reefs</subject><subject>Restoration ecology</subject><subject>rocky intertidal ecology</subject><subject>Salt marshes</subject><subject>sea level</subject><subject>seagrasses</subject><subject>Shellfish</subject><subject>shellfish reefs</subject><subject>Spartina</subject><subject>survival rate</subject><subject>Synecology</subject><subject>vertical zonation</subject><issn>0021-8901</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rHCEUxYfSQrdJn_tUKpQ-TnLV0R37Vpb0H4EG0jyL4-jG7axuvbMb9ov089bJpMljFRSu5_4O91hVbyic0bLOKZeiZlI2Z5SxpXxWLR4rz6sFAKN1q4C-rF4hbgBACc4X1Z_VYBCDJTuTTR_WWyQhEkNiOriBuHgIOcWti-PHUkeXxxDXxKfUkzvXERN7ssup39sxHMJ4JINDTBGJz2lLcrK_jgRvU3Z4L0UzjFuT8dZNLmMiXUhrF4t7ds6XA8eUzRhSPK1eeDOge_1wn1Q3ny9-rr7Wlz--fFt9uqytACZrRYWRAiyly46ppnfWGyNs37dcedsx4SyIhlGrmFUtY-CUsv2y4wzAtI3gJ9X7mVum-L0v_nqT9jkWS00lBdowkJPqfFbZnBCz83qXQxnkqCnoKXw9Ra2nqPV9-KXjwwPXoDWDzybagI9tTAGXLaiiE7PuLgzu-D-s_n518Y__du7bTJE9cRvgTMiJ-25-9yZps87F--aaARXl41vOyv4Lzh2o4Q</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Fodrie, F. Joel</creator><creator>Rodriguez, Antonio B</creator><creator>Baillie, Christopher J</creator><creator>Brodeur, Michelle C</creator><creator>Coleman, Sara E</creator><creator>Gittman, Rachel K</creator><creator>Keller, Danielle A</creator><creator>Kenworthy, Matthew D</creator><creator>Poray, Abigail K</creator><creator>Ridge, Justin T</creator><creator>Theuerkauf, Ethan J</creator><creator>Lindquist, Niels. L</creator><creator>Arnott, Shelley</creator><general>Blackwell Scientific Publications</general><general>John Wiley &amp; Sons Ltd</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201410</creationdate><title>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</title><author>Fodrie, F. Joel ; Rodriguez, Antonio B ; Baillie, Christopher J ; Brodeur, Michelle C ; Coleman, Sara E ; Gittman, Rachel K ; Keller, Danielle A ; Kenworthy, Matthew D ; Poray, Abigail K ; Ridge, Justin T ; Theuerkauf, Ethan J ; Lindquist, Niels. L ; Arnott, Shelley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adults</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>biofouling</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Brackish water ecosystems</topic><topic>Coastal ecology</topic><topic>competition</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Coral reefs</topic><topic>Crabs</topic><topic>ecological restoration</topic><topic>Environmental degradation: ecosystems survey and restoration</topic><topic>Environmental restoration</topic><topic>Food chains</topic><topic>food webs</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastropoda</topic><topic>General aspects</topic><topic>growth</topic><topic>Habitat conservation</topic><topic>Habitats</topic><topic>inundation–productivity gradient</topic><topic>landscape ecology</topic><topic>Marine ecology</topic><topic>Marine management</topic><topic>Oysters</topic><topic>Predation</topic><topic>Reefs</topic><topic>Restoration ecology</topic><topic>rocky intertidal ecology</topic><topic>Salt marshes</topic><topic>sea level</topic><topic>seagrasses</topic><topic>Shellfish</topic><topic>shellfish reefs</topic><topic>Spartina</topic><topic>survival rate</topic><topic>Synecology</topic><topic>vertical zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fodrie, F. Joel</creatorcontrib><creatorcontrib>Rodriguez, Antonio B</creatorcontrib><creatorcontrib>Baillie, Christopher J</creatorcontrib><creatorcontrib>Brodeur, Michelle C</creatorcontrib><creatorcontrib>Coleman, Sara E</creatorcontrib><creatorcontrib>Gittman, Rachel K</creatorcontrib><creatorcontrib>Keller, Danielle A</creatorcontrib><creatorcontrib>Kenworthy, Matthew D</creatorcontrib><creatorcontrib>Poray, Abigail K</creatorcontrib><creatorcontrib>Ridge, Justin T</creatorcontrib><creatorcontrib>Theuerkauf, Ethan J</creatorcontrib><creatorcontrib>Lindquist, Niels. L</creatorcontrib><creatorcontrib>Arnott, Shelley</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fodrie, F. Joel</au><au>Rodriguez, Antonio B</au><au>Baillie, Christopher J</au><au>Brodeur, Michelle C</au><au>Coleman, Sara E</au><au>Gittman, Rachel K</au><au>Keller, Danielle A</au><au>Kenworthy, Matthew D</au><au>Poray, Abigail K</au><au>Ridge, Justin T</au><au>Theuerkauf, Ethan J</au><au>Lindquist, Niels. L</au><au>Arnott, Shelley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</atitle><jtitle>The Journal of applied ecology</jtitle><date>2014-10</date><risdate>2014</risdate><volume>51</volume><issue>5</issue><spage>1314</spage><epage>1325</epage><pages>1314-1325</pages><issn>0021-8901</issn><eissn>1365-2664</eissn><coden>JAPEAI</coden><abstract>Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was &lt;5% of the monthly tidal cycle. Synthesis and applications. The success of restoration initiatives involving habitat‐forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid‐to‐low intertidal). Our developing model proscribes a vertical ‘hot spot’ for restoration efforts to maximize biogenic reef fitness and production.</abstract><cop>Oxford</cop><pub>Blackwell Scientific Publications</pub><doi>10.1111/1365-2664.12276</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8901
ispartof The Journal of applied ecology, 2014-10, Vol.51 (5), p.1314-1325
issn 0021-8901
1365-2664
language eng
recordid cdi_proquest_journals_1610142065
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects adults
Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
biofouling
Biological and medical sciences
biomass
Brackish water ecosystems
Coastal ecology
competition
Conservation, protection and management of environment and wildlife
Coral reefs
Crabs
ecological restoration
Environmental degradation: ecosystems survey and restoration
Environmental restoration
Food chains
food webs
Fundamental and applied biological sciences. Psychology
Gastropoda
General aspects
growth
Habitat conservation
Habitats
inundation–productivity gradient
landscape ecology
Marine ecology
Marine management
Oysters
Predation
Reefs
Restoration ecology
rocky intertidal ecology
Salt marshes
sea level
seagrasses
Shellfish
shellfish reefs
Spartina
survival rate
Synecology
vertical zonation
title Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classic%20paradigms%20in%20a%20novel%20environment:%20inserting%20food%20web%20and%20productivity%20lessons%20from%20rocky%20shores%20and%20saltmarshes%20into%20biogenic%20reef%20restoration&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=Fodrie,%20F.%20Joel&rft.date=2014-10&rft.volume=51&rft.issue=5&rft.spage=1314&rft.epage=1325&rft.pages=1314-1325&rft.issn=0021-8901&rft.eissn=1365-2664&rft.coden=JAPEAI&rft_id=info:doi/10.1111/1365-2664.12276&rft_dat=%3Cjstor_proqu%3E24032569%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610142065&rft_id=info:pmid/&rft_jstor_id=24032569&rfr_iscdi=true