Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration
Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exp...
Gespeichert in:
Veröffentlicht in: | The Journal of applied ecology 2014-10, Vol.51 (5), p.1314-1325 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1325 |
---|---|
container_issue | 5 |
container_start_page | 1314 |
container_title | The Journal of applied ecology |
container_volume | 51 |
creator | Fodrie, F. Joel Rodriguez, Antonio B Baillie, Christopher J Brodeur, Michelle C Coleman, Sara E Gittman, Rachel K Keller, Danielle A Kenworthy, Matthew D Poray, Abigail K Ridge, Justin T Theuerkauf, Ethan J Lindquist, Niels. L Arnott, Shelley |
description | Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was |
doi_str_mv | 10.1111/1365-2664.12276 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1610142065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24032569</jstor_id><sourcerecordid>24032569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</originalsourceid><addsrcrecordid>eNqFkV9rHCEUxYfSQrdJn_tUKpQ-TnLV0R37Vpb0H4EG0jyL4-jG7axuvbMb9ov089bJpMljFRSu5_4O91hVbyic0bLOKZeiZlI2Z5SxpXxWLR4rz6sFAKN1q4C-rF4hbgBACc4X1Z_VYBCDJTuTTR_WWyQhEkNiOriBuHgIOcWti-PHUkeXxxDXxKfUkzvXERN7ssup39sxHMJ4JINDTBGJz2lLcrK_jgRvU3Z4L0UzjFuT8dZNLmMiXUhrF4t7ds6XA8eUzRhSPK1eeDOge_1wn1Q3ny9-rr7Wlz--fFt9uqytACZrRYWRAiyly46ppnfWGyNs37dcedsx4SyIhlGrmFUtY-CUsv2y4wzAtI3gJ9X7mVum-L0v_nqT9jkWS00lBdowkJPqfFbZnBCz83qXQxnkqCnoKXw9Ra2nqPV9-KXjwwPXoDWDzybagI9tTAGXLaiiE7PuLgzu-D-s_n518Y__du7bTJE9cRvgTMiJ-25-9yZps87F--aaARXl41vOyv4Lzh2o4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610142065</pqid></control><display><type>article</type><title>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fodrie, F. Joel ; Rodriguez, Antonio B ; Baillie, Christopher J ; Brodeur, Michelle C ; Coleman, Sara E ; Gittman, Rachel K ; Keller, Danielle A ; Kenworthy, Matthew D ; Poray, Abigail K ; Ridge, Justin T ; Theuerkauf, Ethan J ; Lindquist, Niels. L ; Arnott, Shelley</creator><creatorcontrib>Fodrie, F. Joel ; Rodriguez, Antonio B ; Baillie, Christopher J ; Brodeur, Michelle C ; Coleman, Sara E ; Gittman, Rachel K ; Keller, Danielle A ; Kenworthy, Matthew D ; Poray, Abigail K ; Ridge, Justin T ; Theuerkauf, Ethan J ; Lindquist, Niels. L ; Arnott, Shelley</creatorcontrib><description>Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was <5% of the monthly tidal cycle. Synthesis and applications. The success of restoration initiatives involving habitat‐forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid‐to‐low intertidal). Our developing model proscribes a vertical ‘hot spot’ for restoration efforts to maximize biogenic reef fitness and production.</description><identifier>ISSN: 0021-8901</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/1365-2664.12276</identifier><identifier>CODEN: JAPEAI</identifier><language>eng</language><publisher>Oxford: Blackwell Scientific Publications</publisher><subject>adults ; Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; biofouling ; Biological and medical sciences ; biomass ; Brackish water ecosystems ; Coastal ecology ; competition ; Conservation, protection and management of environment and wildlife ; Coral reefs ; Crabs ; ecological restoration ; Environmental degradation: ecosystems survey and restoration ; Environmental restoration ; Food chains ; food webs ; Fundamental and applied biological sciences. Psychology ; Gastropoda ; General aspects ; growth ; Habitat conservation ; Habitats ; inundation–productivity gradient ; landscape ecology ; Marine ecology ; Marine management ; Oysters ; Predation ; Reefs ; Restoration ecology ; rocky intertidal ecology ; Salt marshes ; sea level ; seagrasses ; Shellfish ; shellfish reefs ; Spartina ; survival rate ; Synecology ; vertical zonation</subject><ispartof>The Journal of applied ecology, 2014-10, Vol.51 (5), p.1314-1325</ispartof><rights>2014 British Ecological Society</rights><rights>2014 The Authors. Journal of Applied Ecology © 2014 British Ecological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</citedby><cites>FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24032569$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24032569$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29036809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fodrie, F. Joel</creatorcontrib><creatorcontrib>Rodriguez, Antonio B</creatorcontrib><creatorcontrib>Baillie, Christopher J</creatorcontrib><creatorcontrib>Brodeur, Michelle C</creatorcontrib><creatorcontrib>Coleman, Sara E</creatorcontrib><creatorcontrib>Gittman, Rachel K</creatorcontrib><creatorcontrib>Keller, Danielle A</creatorcontrib><creatorcontrib>Kenworthy, Matthew D</creatorcontrib><creatorcontrib>Poray, Abigail K</creatorcontrib><creatorcontrib>Ridge, Justin T</creatorcontrib><creatorcontrib>Theuerkauf, Ethan J</creatorcontrib><creatorcontrib>Lindquist, Niels. L</creatorcontrib><creatorcontrib>Arnott, Shelley</creatorcontrib><title>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</title><title>The Journal of applied ecology</title><description>Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was <5% of the monthly tidal cycle. Synthesis and applications. The success of restoration initiatives involving habitat‐forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid‐to‐low intertidal). Our developing model proscribes a vertical ‘hot spot’ for restoration efforts to maximize biogenic reef fitness and production.</description><subject>adults</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>biofouling</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Brackish water ecosystems</subject><subject>Coastal ecology</subject><subject>competition</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Coral reefs</subject><subject>Crabs</subject><subject>ecological restoration</subject><subject>Environmental degradation: ecosystems survey and restoration</subject><subject>Environmental restoration</subject><subject>Food chains</subject><subject>food webs</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastropoda</subject><subject>General aspects</subject><subject>growth</subject><subject>Habitat conservation</subject><subject>Habitats</subject><subject>inundation–productivity gradient</subject><subject>landscape ecology</subject><subject>Marine ecology</subject><subject>Marine management</subject><subject>Oysters</subject><subject>Predation</subject><subject>Reefs</subject><subject>Restoration ecology</subject><subject>rocky intertidal ecology</subject><subject>Salt marshes</subject><subject>sea level</subject><subject>seagrasses</subject><subject>Shellfish</subject><subject>shellfish reefs</subject><subject>Spartina</subject><subject>survival rate</subject><subject>Synecology</subject><subject>vertical zonation</subject><issn>0021-8901</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rHCEUxYfSQrdJn_tUKpQ-TnLV0R37Vpb0H4EG0jyL4-jG7axuvbMb9ov089bJpMljFRSu5_4O91hVbyic0bLOKZeiZlI2Z5SxpXxWLR4rz6sFAKN1q4C-rF4hbgBACc4X1Z_VYBCDJTuTTR_WWyQhEkNiOriBuHgIOcWti-PHUkeXxxDXxKfUkzvXERN7ssup39sxHMJ4JINDTBGJz2lLcrK_jgRvU3Z4L0UzjFuT8dZNLmMiXUhrF4t7ds6XA8eUzRhSPK1eeDOge_1wn1Q3ny9-rr7Wlz--fFt9uqytACZrRYWRAiyly46ppnfWGyNs37dcedsx4SyIhlGrmFUtY-CUsv2y4wzAtI3gJ9X7mVum-L0v_nqT9jkWS00lBdowkJPqfFbZnBCz83qXQxnkqCnoKXw9Ra2nqPV9-KXjwwPXoDWDzybagI9tTAGXLaiiE7PuLgzu-D-s_n518Y__du7bTJE9cRvgTMiJ-25-9yZps87F--aaARXl41vOyv4Lzh2o4Q</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Fodrie, F. Joel</creator><creator>Rodriguez, Antonio B</creator><creator>Baillie, Christopher J</creator><creator>Brodeur, Michelle C</creator><creator>Coleman, Sara E</creator><creator>Gittman, Rachel K</creator><creator>Keller, Danielle A</creator><creator>Kenworthy, Matthew D</creator><creator>Poray, Abigail K</creator><creator>Ridge, Justin T</creator><creator>Theuerkauf, Ethan J</creator><creator>Lindquist, Niels. L</creator><creator>Arnott, Shelley</creator><general>Blackwell Scientific Publications</general><general>John Wiley & Sons Ltd</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201410</creationdate><title>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</title><author>Fodrie, F. Joel ; Rodriguez, Antonio B ; Baillie, Christopher J ; Brodeur, Michelle C ; Coleman, Sara E ; Gittman, Rachel K ; Keller, Danielle A ; Kenworthy, Matthew D ; Poray, Abigail K ; Ridge, Justin T ; Theuerkauf, Ethan J ; Lindquist, Niels. L ; Arnott, Shelley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5026-915a650c117b294decfaa5cdd839fcb25ec05421c92c98220e99cd7b3200a8453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adults</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>biofouling</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Brackish water ecosystems</topic><topic>Coastal ecology</topic><topic>competition</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Coral reefs</topic><topic>Crabs</topic><topic>ecological restoration</topic><topic>Environmental degradation: ecosystems survey and restoration</topic><topic>Environmental restoration</topic><topic>Food chains</topic><topic>food webs</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastropoda</topic><topic>General aspects</topic><topic>growth</topic><topic>Habitat conservation</topic><topic>Habitats</topic><topic>inundation–productivity gradient</topic><topic>landscape ecology</topic><topic>Marine ecology</topic><topic>Marine management</topic><topic>Oysters</topic><topic>Predation</topic><topic>Reefs</topic><topic>Restoration ecology</topic><topic>rocky intertidal ecology</topic><topic>Salt marshes</topic><topic>sea level</topic><topic>seagrasses</topic><topic>Shellfish</topic><topic>shellfish reefs</topic><topic>Spartina</topic><topic>survival rate</topic><topic>Synecology</topic><topic>vertical zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fodrie, F. Joel</creatorcontrib><creatorcontrib>Rodriguez, Antonio B</creatorcontrib><creatorcontrib>Baillie, Christopher J</creatorcontrib><creatorcontrib>Brodeur, Michelle C</creatorcontrib><creatorcontrib>Coleman, Sara E</creatorcontrib><creatorcontrib>Gittman, Rachel K</creatorcontrib><creatorcontrib>Keller, Danielle A</creatorcontrib><creatorcontrib>Kenworthy, Matthew D</creatorcontrib><creatorcontrib>Poray, Abigail K</creatorcontrib><creatorcontrib>Ridge, Justin T</creatorcontrib><creatorcontrib>Theuerkauf, Ethan J</creatorcontrib><creatorcontrib>Lindquist, Niels. L</creatorcontrib><creatorcontrib>Arnott, Shelley</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fodrie, F. Joel</au><au>Rodriguez, Antonio B</au><au>Baillie, Christopher J</au><au>Brodeur, Michelle C</au><au>Coleman, Sara E</au><au>Gittman, Rachel K</au><au>Keller, Danielle A</au><au>Kenworthy, Matthew D</au><au>Poray, Abigail K</au><au>Ridge, Justin T</au><au>Theuerkauf, Ethan J</au><au>Lindquist, Niels. L</au><au>Arnott, Shelley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration</atitle><jtitle>The Journal of applied ecology</jtitle><date>2014-10</date><risdate>2014</risdate><volume>51</volume><issue>5</issue><spage>1314</spage><epage>1325</epage><pages>1314-1325</pages><issn>0021-8901</issn><eissn>1365-2664</eissn><coden>JAPEAI</coden><abstract>Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large‐scale field manipulations. We restored oyster reefs across an aerial exposure gradient (shallow‐subtidal‐to‐mid‐intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man‐made shellfish reefs. We recorded nearly an order‐of‐magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order‐of‐magnitude. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was <5% of the monthly tidal cycle. Synthesis and applications. The success of restoration initiatives involving habitat‐forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid‐to‐low intertidal). Our developing model proscribes a vertical ‘hot spot’ for restoration efforts to maximize biogenic reef fitness and production.</abstract><cop>Oxford</cop><pub>Blackwell Scientific Publications</pub><doi>10.1111/1365-2664.12276</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8901 |
ispartof | The Journal of applied ecology, 2014-10, Vol.51 (5), p.1314-1325 |
issn | 0021-8901 1365-2664 |
language | eng |
recordid | cdi_proquest_journals_1610142065 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | adults Animal and plant ecology Animal, plant and microbial ecology Applied ecology biofouling Biological and medical sciences biomass Brackish water ecosystems Coastal ecology competition Conservation, protection and management of environment and wildlife Coral reefs Crabs ecological restoration Environmental degradation: ecosystems survey and restoration Environmental restoration Food chains food webs Fundamental and applied biological sciences. Psychology Gastropoda General aspects growth Habitat conservation Habitats inundation–productivity gradient landscape ecology Marine ecology Marine management Oysters Predation Reefs Restoration ecology rocky intertidal ecology Salt marshes sea level seagrasses Shellfish shellfish reefs Spartina survival rate Synecology vertical zonation |
title | Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classic%20paradigms%20in%20a%20novel%20environment:%20inserting%20food%20web%20and%20productivity%20lessons%20from%20rocky%20shores%20and%20saltmarshes%20into%20biogenic%20reef%20restoration&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=Fodrie,%20F.%20Joel&rft.date=2014-10&rft.volume=51&rft.issue=5&rft.spage=1314&rft.epage=1325&rft.pages=1314-1325&rft.issn=0021-8901&rft.eissn=1365-2664&rft.coden=JAPEAI&rft_id=info:doi/10.1111/1365-2664.12276&rft_dat=%3Cjstor_proqu%3E24032569%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610142065&rft_id=info:pmid/&rft_jstor_id=24032569&rfr_iscdi=true |