Dynamic optimization in future cellular networks

With multiple air-interface support capabilities and higher cell densities, future cellular networks will offer a diverse spectrum of user services. The resulting dynamics in traffic load and resource demand will challenge present control loop algorithms. In addition, frequent upgrades in the networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bell Labs technical journal 2005, Vol.10 (2), p.99-119
Hauptverfasser: Borst, Simon C., Buvaneswari, Arumugam, Drabeck, Lawrence M., Flanagan, Michael J., Graybeal, John M., Hampel, Georg K., Haner, Mark, MacDonald, William M., Polakos, Paul A., Rittenhouse, George, Saniee, Iraj, Weiss, Alan, Whiting, Philip A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 99
container_title Bell Labs technical journal
container_volume 10
creator Borst, Simon C.
Buvaneswari, Arumugam
Drabeck, Lawrence M.
Flanagan, Michael J.
Graybeal, John M.
Hampel, Georg K.
Haner, Mark
MacDonald, William M.
Polakos, Paul A.
Rittenhouse, George
Saniee, Iraj
Weiss, Alan
Whiting, Philip A.
description With multiple air-interface support capabilities and higher cell densities, future cellular networks will offer a diverse spectrum of user services. The resulting dynamics in traffic load and resource demand will challenge present control loop algorithms. In addition, frequent upgrades in the network infrastructure will substantially increase the network operation costs if done using current optimization methodology. This motivates the development of dynamic control algorithms that can automatically adjust the network to changes in both traffic and network conditions and autonomously adapt when new cells are added to the system. Bell Labs is pursuing efforts to realize such algorithms with research on near-term approaches that benefit present third-generation (3G) systems and the development of control features for future networks that perform dynamic parameter adjustment across protocol layers. In this paper, we describe the development of conceptual approaches, algorithms, modeling, simulation, and real-time measurements that provide the foundation for future dynamic network optimization techniques.
doi_str_mv 10.1002/bltj.20096
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1603711636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6767889</ieee_id><sourcerecordid>743664744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3916-b13f15ca7bb1a944c70a2a7fb07226035a9bc0377d22e2e074ec521fd9bbb7de3</originalsourceid><addsrcrecordid>eNp90M1PwjAYBvDFaCKiF69elngwMRn2a323o4KghmBiUI9NW7qkMDZstyD-9Q6HHDx46dvD72nfPEFwjlEPI0RuVF7NewShlB8EHRzTJAKK4sPmjpI0guY4Dk68nyOEcQqsE6DBppBLq8NyVdml_ZKVLYvQFmFWV7UzoTZ5XufShYWp1qVb-NPgKJO5N2e72Q1eh_fT_kM0fh499m_HkaYp5pHCNMOxlqAUliljGpAkEjKFgBCOaCxTpREFmBFiiEHAjI4JzmapUgpmhnaDq_bdlSs_auMrsbR-u40sTFl7AYxyzoCxRl7-kfOydkWznMDNT4Axp7xR163SrvTemUysnF1KtxEYiW13Ytud-OmuwbjFa5ubzT9S3I2nT7-ZqM1YX5nPfUa6heBAIRbvk5F4g-RuOHmZikHjL3beGLPnHDgkSUq_AWFOiIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1603711636</pqid></control><display><type>article</type><title>Dynamic optimization in future cellular networks</title><source>IEEE Electronic Library (IEL)</source><creator>Borst, Simon C. ; Buvaneswari, Arumugam ; Drabeck, Lawrence M. ; Flanagan, Michael J. ; Graybeal, John M. ; Hampel, Georg K. ; Haner, Mark ; MacDonald, William M. ; Polakos, Paul A. ; Rittenhouse, George ; Saniee, Iraj ; Weiss, Alan ; Whiting, Philip A.</creator><creatorcontrib>Borst, Simon C. ; Buvaneswari, Arumugam ; Drabeck, Lawrence M. ; Flanagan, Michael J. ; Graybeal, John M. ; Hampel, Georg K. ; Haner, Mark ; MacDonald, William M. ; Polakos, Paul A. ; Rittenhouse, George ; Saniee, Iraj ; Weiss, Alan ; Whiting, Philip A.</creatorcontrib><description>With multiple air-interface support capabilities and higher cell densities, future cellular networks will offer a diverse spectrum of user services. The resulting dynamics in traffic load and resource demand will challenge present control loop algorithms. In addition, frequent upgrades in the network infrastructure will substantially increase the network operation costs if done using current optimization methodology. This motivates the development of dynamic control algorithms that can automatically adjust the network to changes in both traffic and network conditions and autonomously adapt when new cells are added to the system. Bell Labs is pursuing efforts to realize such algorithms with research on near-term approaches that benefit present third-generation (3G) systems and the development of control features for future networks that perform dynamic parameter adjustment across protocol layers. In this paper, we describe the development of conceptual approaches, algorithms, modeling, simulation, and real-time measurements that provide the foundation for future dynamic network optimization techniques.</description><identifier>ISSN: 1089-7089</identifier><identifier>EISSN: 1538-7305</identifier><identifier>DOI: 10.1002/bltj.20096</identifier><identifier>CODEN: BLTJFD</identifier><language>eng</language><publisher>Hoboken: IEEE</publisher><ispartof>Bell Labs technical journal, 2005, Vol.10 (2), p.99-119</ispartof><rights>2005 Lucent Technologies Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3916-b13f15ca7bb1a944c70a2a7fb07226035a9bc0377d22e2e074ec521fd9bbb7de3</citedby><cites>FETCH-LOGICAL-c3916-b13f15ca7bb1a944c70a2a7fb07226035a9bc0377d22e2e074ec521fd9bbb7de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbltj.20096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6767889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,1418,27929,27930,45579,45580,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6767889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borst, Simon C.</creatorcontrib><creatorcontrib>Buvaneswari, Arumugam</creatorcontrib><creatorcontrib>Drabeck, Lawrence M.</creatorcontrib><creatorcontrib>Flanagan, Michael J.</creatorcontrib><creatorcontrib>Graybeal, John M.</creatorcontrib><creatorcontrib>Hampel, Georg K.</creatorcontrib><creatorcontrib>Haner, Mark</creatorcontrib><creatorcontrib>MacDonald, William M.</creatorcontrib><creatorcontrib>Polakos, Paul A.</creatorcontrib><creatorcontrib>Rittenhouse, George</creatorcontrib><creatorcontrib>Saniee, Iraj</creatorcontrib><creatorcontrib>Weiss, Alan</creatorcontrib><creatorcontrib>Whiting, Philip A.</creatorcontrib><title>Dynamic optimization in future cellular networks</title><title>Bell Labs technical journal</title><addtitle>BLTJ</addtitle><addtitle>Bell Labs Tech. J</addtitle><description>With multiple air-interface support capabilities and higher cell densities, future cellular networks will offer a diverse spectrum of user services. The resulting dynamics in traffic load and resource demand will challenge present control loop algorithms. In addition, frequent upgrades in the network infrastructure will substantially increase the network operation costs if done using current optimization methodology. This motivates the development of dynamic control algorithms that can automatically adjust the network to changes in both traffic and network conditions and autonomously adapt when new cells are added to the system. Bell Labs is pursuing efforts to realize such algorithms with research on near-term approaches that benefit present third-generation (3G) systems and the development of control features for future networks that perform dynamic parameter adjustment across protocol layers. In this paper, we describe the development of conceptual approaches, algorithms, modeling, simulation, and real-time measurements that provide the foundation for future dynamic network optimization techniques.</description><issn>1089-7089</issn><issn>1538-7305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90M1PwjAYBvDFaCKiF69elngwMRn2a323o4KghmBiUI9NW7qkMDZstyD-9Q6HHDx46dvD72nfPEFwjlEPI0RuVF7NewShlB8EHRzTJAKK4sPmjpI0guY4Dk68nyOEcQqsE6DBppBLq8NyVdml_ZKVLYvQFmFWV7UzoTZ5XufShYWp1qVb-NPgKJO5N2e72Q1eh_fT_kM0fh499m_HkaYp5pHCNMOxlqAUliljGpAkEjKFgBCOaCxTpREFmBFiiEHAjI4JzmapUgpmhnaDq_bdlSs_auMrsbR-u40sTFl7AYxyzoCxRl7-kfOydkWznMDNT4Axp7xR163SrvTemUysnF1KtxEYiW13Ytud-OmuwbjFa5ubzT9S3I2nT7-ZqM1YX5nPfUa6heBAIRbvk5F4g-RuOHmZikHjL3beGLPnHDgkSUq_AWFOiIk</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Borst, Simon C.</creator><creator>Buvaneswari, Arumugam</creator><creator>Drabeck, Lawrence M.</creator><creator>Flanagan, Michael J.</creator><creator>Graybeal, John M.</creator><creator>Hampel, Georg K.</creator><creator>Haner, Mark</creator><creator>MacDonald, William M.</creator><creator>Polakos, Paul A.</creator><creator>Rittenhouse, George</creator><creator>Saniee, Iraj</creator><creator>Weiss, Alan</creator><creator>Whiting, Philip A.</creator><general>IEEE</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>Dynamic optimization in future cellular networks</title><author>Borst, Simon C. ; Buvaneswari, Arumugam ; Drabeck, Lawrence M. ; Flanagan, Michael J. ; Graybeal, John M. ; Hampel, Georg K. ; Haner, Mark ; MacDonald, William M. ; Polakos, Paul A. ; Rittenhouse, George ; Saniee, Iraj ; Weiss, Alan ; Whiting, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3916-b13f15ca7bb1a944c70a2a7fb07226035a9bc0377d22e2e074ec521fd9bbb7de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borst, Simon C.</creatorcontrib><creatorcontrib>Buvaneswari, Arumugam</creatorcontrib><creatorcontrib>Drabeck, Lawrence M.</creatorcontrib><creatorcontrib>Flanagan, Michael J.</creatorcontrib><creatorcontrib>Graybeal, John M.</creatorcontrib><creatorcontrib>Hampel, Georg K.</creatorcontrib><creatorcontrib>Haner, Mark</creatorcontrib><creatorcontrib>MacDonald, William M.</creatorcontrib><creatorcontrib>Polakos, Paul A.</creatorcontrib><creatorcontrib>Rittenhouse, George</creatorcontrib><creatorcontrib>Saniee, Iraj</creatorcontrib><creatorcontrib>Weiss, Alan</creatorcontrib><creatorcontrib>Whiting, Philip A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Bell Labs technical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borst, Simon C.</au><au>Buvaneswari, Arumugam</au><au>Drabeck, Lawrence M.</au><au>Flanagan, Michael J.</au><au>Graybeal, John M.</au><au>Hampel, Georg K.</au><au>Haner, Mark</au><au>MacDonald, William M.</au><au>Polakos, Paul A.</au><au>Rittenhouse, George</au><au>Saniee, Iraj</au><au>Weiss, Alan</au><au>Whiting, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic optimization in future cellular networks</atitle><jtitle>Bell Labs technical journal</jtitle><stitle>BLTJ</stitle><addtitle>Bell Labs Tech. J</addtitle><date>2005</date><risdate>2005</risdate><volume>10</volume><issue>2</issue><spage>99</spage><epage>119</epage><pages>99-119</pages><issn>1089-7089</issn><eissn>1538-7305</eissn><coden>BLTJFD</coden><abstract>With multiple air-interface support capabilities and higher cell densities, future cellular networks will offer a diverse spectrum of user services. The resulting dynamics in traffic load and resource demand will challenge present control loop algorithms. In addition, frequent upgrades in the network infrastructure will substantially increase the network operation costs if done using current optimization methodology. This motivates the development of dynamic control algorithms that can automatically adjust the network to changes in both traffic and network conditions and autonomously adapt when new cells are added to the system. Bell Labs is pursuing efforts to realize such algorithms with research on near-term approaches that benefit present third-generation (3G) systems and the development of control features for future networks that perform dynamic parameter adjustment across protocol layers. In this paper, we describe the development of conceptual approaches, algorithms, modeling, simulation, and real-time measurements that provide the foundation for future dynamic network optimization techniques.</abstract><cop>Hoboken</cop><pub>IEEE</pub><doi>10.1002/bltj.20096</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7089
ispartof Bell Labs technical journal, 2005, Vol.10 (2), p.99-119
issn 1089-7089
1538-7305
language eng
recordid cdi_proquest_journals_1603711636
source IEEE Electronic Library (IEL)
title Dynamic optimization in future cellular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20optimization%20in%20future%20cellular%20networks&rft.jtitle=Bell%20Labs%20technical%20journal&rft.au=Borst,%20Simon%20C.&rft.date=2005&rft.volume=10&rft.issue=2&rft.spage=99&rft.epage=119&rft.pages=99-119&rft.issn=1089-7089&rft.eissn=1538-7305&rft.coden=BLTJFD&rft_id=info:doi/10.1002/bltj.20096&rft_dat=%3Cproquest_RIE%3E743664744%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1603711636&rft_id=info:pmid/&rft_ieee_id=6767889&rfr_iscdi=true