Development and Evaluation of Quality Control Methods in a Microtask Crowdsourcing Platform

Open Crowdsourcing platforms like Amazon Mechanical Turk provide an attractive solution for process of high volume tasks with low costs. However problems of quality control is still of major interest. In this paper, we design a private crowdsourcing system, where we can devise methods for the qualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Japanese Society for Artificial Intelligence 2014/11/01, Vol.29(6), pp.503-515
Hauptverfasser: Ashikawa, Masayuki, Kawamura, Takahiro, Ohsuga, Akihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 6
container_start_page 503
container_title Transactions of the Japanese Society for Artificial Intelligence
container_volume 29
creator Ashikawa, Masayuki
Kawamura, Takahiro
Ohsuga, Akihiko
description Open Crowdsourcing platforms like Amazon Mechanical Turk provide an attractive solution for process of high volume tasks with low costs. However problems of quality control is still of major interest. In this paper, we design a private crowdsourcing system, where we can devise methods for the quality control. For the quality control, we introduce four worker selection methods, each of which we call preprocessing filtering, real-time filtering, post processing filtering, and guess processing filtering. These methods include a novel approach, which utilizes a collaborative filtering technique in addition to a basic approach of initial training or gold standard data. For an use case, we have built a very large dictionary, which is necessary for Large Vocabulary Continuous Speech Recognition and Text-to-Speech. We show how the system yields high quality results for some difficult tasks of word extraction, part-of-speech tagging, and pronunciation prediction to build a large dictionary.
doi_str_mv 10.1527/tjsai.29.503
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1566910991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3449311001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2753-3e6906fb588f9fd8f9fd24b751e1d4d016d2d09b07661554300dba277349a5ee3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRSMEElXpjg-wxJYUP2KnXkJ4Sq0ACVYsLCd2WpfULrZT1L8nbaqyuTPSnJm5uklyieAYUZzfxGWQZoz5mEJykgwQyVg6gQSeHnqYo-w8GYVgSggRJhmCdJB83euNbtx6pW0E0irwsJFNK6NxFrgavLeyMXELCmejdw2Y6bhwKgBjgQQzU3kXZfgGhXe_KrjWV8bOwVsjY-386iI5q2UT9OhQh8nn48NH8ZxOX59eittpWuGckpRoxiGrSzqZ1LxWe8FZmVOkkcoURExhBXkJc8YQpRmBUJUS5znJuKRak2Fy1d9de_fT6hDFsrNiu5cCUcY4gpyjjrruqc50CF7XYu3NSvqtQFDsEhT7BAXmokuww-96fBminOsjLH00VaP_YbaTfuk4rBbSC23JHy_ZfLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566910991</pqid></control><display><type>article</type><title>Development and Evaluation of Quality Control Methods in a Microtask Crowdsourcing Platform</title><source>J-STAGE (Free - Japanese)</source><source>EZB Electronic Journals Library</source><creator>Ashikawa, Masayuki ; Kawamura, Takahiro ; Ohsuga, Akihiko</creator><creatorcontrib>Ashikawa, Masayuki ; Kawamura, Takahiro ; Ohsuga, Akihiko</creatorcontrib><description>Open Crowdsourcing platforms like Amazon Mechanical Turk provide an attractive solution for process of high volume tasks with low costs. However problems of quality control is still of major interest. In this paper, we design a private crowdsourcing system, where we can devise methods for the quality control. For the quality control, we introduce four worker selection methods, each of which we call preprocessing filtering, real-time filtering, post processing filtering, and guess processing filtering. These methods include a novel approach, which utilizes a collaborative filtering technique in addition to a basic approach of initial training or gold standard data. For an use case, we have built a very large dictionary, which is necessary for Large Vocabulary Continuous Speech Recognition and Text-to-Speech. We show how the system yields high quality results for some difficult tasks of word extraction, part-of-speech tagging, and pronunciation prediction to build a large dictionary.</description><identifier>ISSN: 1346-0714</identifier><identifier>EISSN: 1346-8030</identifier><identifier>DOI: 10.1527/tjsai.29.503</identifier><language>eng</language><publisher>Tokyo: The Japanese Society for Artificial Intelligence</publisher><subject>crowdsourcing ; quality control ; worker control</subject><ispartof>Transactions of the Japanese Society for Artificial Intelligence, 2014/11/01, Vol.29(6), pp.503-515</ispartof><rights>The Japanese Society for Artificial Intelligence 2014</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2753-3e6906fb588f9fd8f9fd24b751e1d4d016d2d09b07661554300dba277349a5ee3</citedby><cites>FETCH-LOGICAL-c2753-3e6906fb588f9fd8f9fd24b751e1d4d016d2d09b07661554300dba277349a5ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27923,27924</link.rule.ids></links><search><creatorcontrib>Ashikawa, Masayuki</creatorcontrib><creatorcontrib>Kawamura, Takahiro</creatorcontrib><creatorcontrib>Ohsuga, Akihiko</creatorcontrib><title>Development and Evaluation of Quality Control Methods in a Microtask Crowdsourcing Platform</title><title>Transactions of the Japanese Society for Artificial Intelligence</title><description>Open Crowdsourcing platforms like Amazon Mechanical Turk provide an attractive solution for process of high volume tasks with low costs. However problems of quality control is still of major interest. In this paper, we design a private crowdsourcing system, where we can devise methods for the quality control. For the quality control, we introduce four worker selection methods, each of which we call preprocessing filtering, real-time filtering, post processing filtering, and guess processing filtering. These methods include a novel approach, which utilizes a collaborative filtering technique in addition to a basic approach of initial training or gold standard data. For an use case, we have built a very large dictionary, which is necessary for Large Vocabulary Continuous Speech Recognition and Text-to-Speech. We show how the system yields high quality results for some difficult tasks of word extraction, part-of-speech tagging, and pronunciation prediction to build a large dictionary.</description><subject>crowdsourcing</subject><subject>quality control</subject><subject>worker control</subject><issn>1346-0714</issn><issn>1346-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRSMEElXpjg-wxJYUP2KnXkJ4Sq0ACVYsLCd2WpfULrZT1L8nbaqyuTPSnJm5uklyieAYUZzfxGWQZoz5mEJykgwQyVg6gQSeHnqYo-w8GYVgSggRJhmCdJB83euNbtx6pW0E0irwsJFNK6NxFrgavLeyMXELCmejdw2Y6bhwKgBjgQQzU3kXZfgGhXe_KrjWV8bOwVsjY-386iI5q2UT9OhQh8nn48NH8ZxOX59eittpWuGckpRoxiGrSzqZ1LxWe8FZmVOkkcoURExhBXkJc8YQpRmBUJUS5znJuKRak2Fy1d9de_fT6hDFsrNiu5cCUcY4gpyjjrruqc50CF7XYu3NSvqtQFDsEhT7BAXmokuww-96fBminOsjLH00VaP_YbaTfuk4rBbSC23JHy_ZfLk</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Ashikawa, Masayuki</creator><creator>Kawamura, Takahiro</creator><creator>Ohsuga, Akihiko</creator><general>The Japanese Society for Artificial Intelligence</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>Development and Evaluation of Quality Control Methods in a Microtask Crowdsourcing Platform</title><author>Ashikawa, Masayuki ; Kawamura, Takahiro ; Ohsuga, Akihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2753-3e6906fb588f9fd8f9fd24b751e1d4d016d2d09b07661554300dba277349a5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>crowdsourcing</topic><topic>quality control</topic><topic>worker control</topic><toplevel>online_resources</toplevel><creatorcontrib>Ashikawa, Masayuki</creatorcontrib><creatorcontrib>Kawamura, Takahiro</creatorcontrib><creatorcontrib>Ohsuga, Akihiko</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashikawa, Masayuki</au><au>Kawamura, Takahiro</au><au>Ohsuga, Akihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Evaluation of Quality Control Methods in a Microtask Crowdsourcing Platform</atitle><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>29</volume><issue>6</issue><spage>503</spage><epage>515</epage><pages>503-515</pages><issn>1346-0714</issn><eissn>1346-8030</eissn><abstract>Open Crowdsourcing platforms like Amazon Mechanical Turk provide an attractive solution for process of high volume tasks with low costs. However problems of quality control is still of major interest. In this paper, we design a private crowdsourcing system, where we can devise methods for the quality control. For the quality control, we introduce four worker selection methods, each of which we call preprocessing filtering, real-time filtering, post processing filtering, and guess processing filtering. These methods include a novel approach, which utilizes a collaborative filtering technique in addition to a basic approach of initial training or gold standard data. For an use case, we have built a very large dictionary, which is necessary for Large Vocabulary Continuous Speech Recognition and Text-to-Speech. We show how the system yields high quality results for some difficult tasks of word extraction, part-of-speech tagging, and pronunciation prediction to build a large dictionary.</abstract><cop>Tokyo</cop><pub>The Japanese Society for Artificial Intelligence</pub><doi>10.1527/tjsai.29.503</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1346-0714
ispartof Transactions of the Japanese Society for Artificial Intelligence, 2014/11/01, Vol.29(6), pp.503-515
issn 1346-0714
1346-8030
language eng
recordid cdi_proquest_journals_1566910991
source J-STAGE (Free - Japanese); EZB Electronic Journals Library
subjects crowdsourcing
quality control
worker control
title Development and Evaluation of Quality Control Methods in a Microtask Crowdsourcing Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Evaluation%20of%20Quality%20Control%20Methods%20in%20a%20Microtask%20Crowdsourcing%20Platform&rft.jtitle=Transactions%20of%20the%20Japanese%20Society%20for%20Artificial%20Intelligence&rft.au=Ashikawa,%20Masayuki&rft.date=2014-11-01&rft.volume=29&rft.issue=6&rft.spage=503&rft.epage=515&rft.pages=503-515&rft.issn=1346-0714&rft.eissn=1346-8030&rft_id=info:doi/10.1527/tjsai.29.503&rft_dat=%3Cproquest_cross%3E3449311001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566910991&rft_id=info:pmid/&rfr_iscdi=true