On Bourbaki's axiomatic system for set theory

In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 2014-11, Vol.191 (17), p.4069-4098
Hauptverfasser: Anacona, Maribel, Arboleda, Luis Carlos, Pérez-Fernández, F. Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4098
container_issue 17
container_start_page 4069
container_title Synthese (Dordrecht)
container_volume 191
creator Anacona, Maribel
Arboleda, Luis Carlos
Pérez-Fernández, F. Javier
description In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.
doi_str_mv 10.1007/s11229-014-0515-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1566749776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24021615</jstor_id><sourcerecordid>24021615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gAdhwYOn6Mzmc49a_IJCL3oO2WyiW21Tky3Yf2_KiniSOczlfd4ZHkLOEK4QQF1nxLpuKCCnIFBQ3CMTFIpRaCTfJxMA1lClhTokRzkvABAlhwmh81V1Gzepte_9Za7sVx-Xduhdlbd58MsqxFRlP1TDm49pe0IOgv3I_vRnH5OX-7vn6SOdzR-epjcz6jjogQbJROdbq3zHpdDC1Tb4wME2LqgWUbkGFHOKa8mk1qKV0MkyznPdMdmwY3Ix9q5T_Nz4PJhF-XFVThoUUireKCVLCseUSzHn5INZp35p09YgmJ0VM1oxxYrZWTFYmHpkcsmuXn360_wPdD5CizzE9Hul5lCjRMG-AW5JbMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566749776</pqid></control><display><type>article</type><title>On Bourbaki's axiomatic system for set theory</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anacona, Maribel ; Arboleda, Luis Carlos ; Pérez-Fernández, F. Javier</creator><creatorcontrib>Anacona, Maribel ; Arboleda, Luis Carlos ; Pérez-Fernández, F. Javier</creatorcontrib><description>In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-014-0515-1</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Attitudes ; Axiom of choice ; Axioms ; Category theory ; Education ; Epistemology ; Logic ; Mathematical logic ; Mathematical objects ; Mathematical relations ; Mathematical set theory ; Mathematical sets ; Mathematical theorems ; Mathematics ; Metaphysics ; Philosophy ; Philosophy of Language ; Philosophy of Science ; Semiotics ; Set theory</subject><ispartof>Synthese (Dordrecht), 2014-11, Vol.191 (17), p.4069-4098</ispartof><rights>Springer Science+Business Media 2014</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</citedby><cites>FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24021615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24021615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Anacona, Maribel</creatorcontrib><creatorcontrib>Arboleda, Luis Carlos</creatorcontrib><creatorcontrib>Pérez-Fernández, F. Javier</creatorcontrib><title>On Bourbaki's axiomatic system for set theory</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.</description><subject>Attitudes</subject><subject>Axiom of choice</subject><subject>Axioms</subject><subject>Category theory</subject><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Mathematical logic</subject><subject>Mathematical objects</subject><subject>Mathematical relations</subject><subject>Mathematical set theory</subject><subject>Mathematical sets</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Metaphysics</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><subject>Semiotics</subject><subject>Set theory</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWD9-gAdhwYOn6Mzmc49a_IJCL3oO2WyiW21Tky3Yf2_KiniSOczlfd4ZHkLOEK4QQF1nxLpuKCCnIFBQ3CMTFIpRaCTfJxMA1lClhTokRzkvABAlhwmh81V1Gzepte_9Za7sVx-Xduhdlbd58MsqxFRlP1TDm49pe0IOgv3I_vRnH5OX-7vn6SOdzR-epjcz6jjogQbJROdbq3zHpdDC1Tb4wME2LqgWUbkGFHOKa8mk1qKV0MkyznPdMdmwY3Ix9q5T_Nz4PJhF-XFVThoUUireKCVLCseUSzHn5INZp35p09YgmJ0VM1oxxYrZWTFYmHpkcsmuXn360_wPdD5CizzE9Hul5lCjRMG-AW5JbMk</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Anacona, Maribel</creator><creator>Arboleda, Luis Carlos</creator><creator>Pérez-Fernández, F. Javier</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20141101</creationdate><title>On Bourbaki's axiomatic system for set theory</title><author>Anacona, Maribel ; Arboleda, Luis Carlos ; Pérez-Fernández, F. Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Attitudes</topic><topic>Axiom of choice</topic><topic>Axioms</topic><topic>Category theory</topic><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Mathematical logic</topic><topic>Mathematical objects</topic><topic>Mathematical relations</topic><topic>Mathematical set theory</topic><topic>Mathematical sets</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Metaphysics</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><topic>Semiotics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anacona, Maribel</creatorcontrib><creatorcontrib>Arboleda, Luis Carlos</creatorcontrib><creatorcontrib>Pérez-Fernández, F. Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Access via Art, Design &amp; Architecture Collection (ProQuest)</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anacona, Maribel</au><au>Arboleda, Luis Carlos</au><au>Pérez-Fernández, F. Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Bourbaki's axiomatic system for set theory</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>191</volume><issue>17</issue><spage>4069</spage><epage>4098</epage><pages>4069-4098</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11229-014-0515-1</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-7857
ispartof Synthese (Dordrecht), 2014-11, Vol.191 (17), p.4069-4098
issn 0039-7857
1573-0964
language eng
recordid cdi_proquest_journals_1566749776
source JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Attitudes
Axiom of choice
Axioms
Category theory
Education
Epistemology
Logic
Mathematical logic
Mathematical objects
Mathematical relations
Mathematical set theory
Mathematical sets
Mathematical theorems
Mathematics
Metaphysics
Philosophy
Philosophy of Language
Philosophy of Science
Semiotics
Set theory
title On Bourbaki's axiomatic system for set theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Bourbaki's%20axiomatic%20system%20for%20set%20theory&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Anacona,%20Maribel&rft.date=2014-11-01&rft.volume=191&rft.issue=17&rft.spage=4069&rft.epage=4098&rft.pages=4069-4098&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-014-0515-1&rft_dat=%3Cjstor_proqu%3E24021615%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566749776&rft_id=info:pmid/&rft_jstor_id=24021615&rfr_iscdi=true