On Bourbaki's axiomatic system for set theory
In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermel...
Gespeichert in:
Veröffentlicht in: | Synthese (Dordrecht) 2014-11, Vol.191 (17), p.4069-4098 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4098 |
---|---|
container_issue | 17 |
container_start_page | 4069 |
container_title | Synthese (Dordrecht) |
container_volume | 191 |
creator | Anacona, Maribel Arboleda, Luis Carlos Pérez-Fernández, F. Javier |
description | In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group. |
doi_str_mv | 10.1007/s11229-014-0515-1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1566749776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24021615</jstor_id><sourcerecordid>24021615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gAdhwYOn6Mzmc49a_IJCL3oO2WyiW21Tky3Yf2_KiniSOczlfd4ZHkLOEK4QQF1nxLpuKCCnIFBQ3CMTFIpRaCTfJxMA1lClhTokRzkvABAlhwmh81V1Gzepte_9Za7sVx-Xduhdlbd58MsqxFRlP1TDm49pe0IOgv3I_vRnH5OX-7vn6SOdzR-epjcz6jjogQbJROdbq3zHpdDC1Tb4wME2LqgWUbkGFHOKa8mk1qKV0MkyznPdMdmwY3Ix9q5T_Nz4PJhF-XFVThoUUireKCVLCseUSzHn5INZp35p09YgmJ0VM1oxxYrZWTFYmHpkcsmuXn360_wPdD5CizzE9Hul5lCjRMG-AW5JbMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566749776</pqid></control><display><type>article</type><title>On Bourbaki's axiomatic system for set theory</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anacona, Maribel ; Arboleda, Luis Carlos ; Pérez-Fernández, F. Javier</creator><creatorcontrib>Anacona, Maribel ; Arboleda, Luis Carlos ; Pérez-Fernández, F. Javier</creatorcontrib><description>In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-014-0515-1</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Attitudes ; Axiom of choice ; Axioms ; Category theory ; Education ; Epistemology ; Logic ; Mathematical logic ; Mathematical objects ; Mathematical relations ; Mathematical set theory ; Mathematical sets ; Mathematical theorems ; Mathematics ; Metaphysics ; Philosophy ; Philosophy of Language ; Philosophy of Science ; Semiotics ; Set theory</subject><ispartof>Synthese (Dordrecht), 2014-11, Vol.191 (17), p.4069-4098</ispartof><rights>Springer Science+Business Media 2014</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</citedby><cites>FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24021615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24021615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Anacona, Maribel</creatorcontrib><creatorcontrib>Arboleda, Luis Carlos</creatorcontrib><creatorcontrib>Pérez-Fernández, F. Javier</creatorcontrib><title>On Bourbaki's axiomatic system for set theory</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.</description><subject>Attitudes</subject><subject>Axiom of choice</subject><subject>Axioms</subject><subject>Category theory</subject><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Mathematical logic</subject><subject>Mathematical objects</subject><subject>Mathematical relations</subject><subject>Mathematical set theory</subject><subject>Mathematical sets</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Metaphysics</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><subject>Semiotics</subject><subject>Set theory</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWD9-gAdhwYOn6Mzmc49a_IJCL3oO2WyiW21Tky3Yf2_KiniSOczlfd4ZHkLOEK4QQF1nxLpuKCCnIFBQ3CMTFIpRaCTfJxMA1lClhTokRzkvABAlhwmh81V1Gzepte_9Za7sVx-Xduhdlbd58MsqxFRlP1TDm49pe0IOgv3I_vRnH5OX-7vn6SOdzR-epjcz6jjogQbJROdbq3zHpdDC1Tb4wME2LqgWUbkGFHOKa8mk1qKV0MkyznPdMdmwY3Ix9q5T_Nz4PJhF-XFVThoUUireKCVLCseUSzHn5INZp35p09YgmJ0VM1oxxYrZWTFYmHpkcsmuXn360_wPdD5CizzE9Hul5lCjRMG-AW5JbMk</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Anacona, Maribel</creator><creator>Arboleda, Luis Carlos</creator><creator>Pérez-Fernández, F. Javier</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20141101</creationdate><title>On Bourbaki's axiomatic system for set theory</title><author>Anacona, Maribel ; Arboleda, Luis Carlos ; Pérez-Fernández, F. Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f635deba7ed46585c2afef40a9cf7b117c9073c748636885b60d6d6dce48d3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Attitudes</topic><topic>Axiom of choice</topic><topic>Axioms</topic><topic>Category theory</topic><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Mathematical logic</topic><topic>Mathematical objects</topic><topic>Mathematical relations</topic><topic>Mathematical set theory</topic><topic>Mathematical sets</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Metaphysics</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><topic>Semiotics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anacona, Maribel</creatorcontrib><creatorcontrib>Arboleda, Luis Carlos</creatorcontrib><creatorcontrib>Pérez-Fernández, F. Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Access via Art, Design & Architecture Collection (ProQuest)</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anacona, Maribel</au><au>Arboleda, Luis Carlos</au><au>Pérez-Fernández, F. Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Bourbaki's axiomatic system for set theory</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>191</volume><issue>17</issue><spage>4069</spage><epage>4098</epage><pages>4069-4098</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign τ in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo—Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck's proposal of adding to Bourbaki's system the axiom of universes for the purpose of considering the theory of categories. In this regard, we make some historical and epistemological remarks that could explain the conservative attitude of the Group.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11229-014-0515-1</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-7857 |
ispartof | Synthese (Dordrecht), 2014-11, Vol.191 (17), p.4069-4098 |
issn | 0039-7857 1573-0964 |
language | eng |
recordid | cdi_proquest_journals_1566749776 |
source | JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Attitudes Axiom of choice Axioms Category theory Education Epistemology Logic Mathematical logic Mathematical objects Mathematical relations Mathematical set theory Mathematical sets Mathematical theorems Mathematics Metaphysics Philosophy Philosophy of Language Philosophy of Science Semiotics Set theory |
title | On Bourbaki's axiomatic system for set theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Bourbaki's%20axiomatic%20system%20for%20set%20theory&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Anacona,%20Maribel&rft.date=2014-11-01&rft.volume=191&rft.issue=17&rft.spage=4069&rft.epage=4098&rft.pages=4069-4098&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-014-0515-1&rft_dat=%3Cjstor_proqu%3E24021615%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566749776&rft_id=info:pmid/&rft_jstor_id=24021615&rfr_iscdi=true |