Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides
A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation functio...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2014-10, Vol.50 (10), p.808-814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 814 |
---|---|
container_issue | 10 |
container_start_page | 808 |
container_title | IEEE journal of quantum electronics |
container_volume | 50 |
creator | Tran, Thang Q. Kim, Sangin |
description | A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted. |
doi_str_mv | 10.1109/JQE.2014.2347371 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1565554241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6878410</ieee_id><sourcerecordid>3443722461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</originalsourceid><addsrcrecordid>eNpdkM1PwzAMxSMEEmNwR-JSiQuXjrhJmvYI08aHhvgWxyhN3ZGpa0bTIu2_J2MTB-SDZev3rOdHyCnQEQDNL--fJ6OEAh8ljEsmYY8MQIgsBglsnwwohSzOIZeH5Mj7RRg5z-iAvLx2urC17dbR2DWl7axrIldFU9vYDuNJjUtsuuga9TJ6at1Kz_Uv8oDdpyt9ZJto5rxfRx_6G-e9LdEfk4NK1x5Pdn1I3qeTt_FtPHu8uRtfzWLDctrFRW7KVGhZMJAZ1UYYUwXfCWrOK2AmrFOtmWaJLMrSSCFMmpsiMyCZxlyzIbnY3l217qtH36ml9QbrWjfoeq8gTSjNQ8mAnv9DF65vm-BOgUiFEDzhECi6pUwbXmqxUqvWLnW7VkDVJmQVQlabkNUu5CA520osIv7haSYzDpT9AOmRd8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565554241</pqid></control><display><type>article</type><title>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</title><source>IEEE Electronic Library (IEL)</source><creator>Tran, Thang Q. ; Kim, Sangin</creator><creatorcontrib>Tran, Thang Q. ; Kim, Sangin</creatorcontrib><description>A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2014.2347371</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximants ; Beams (radiation) ; Finite element analysis ; Finite element method ; Indexes ; Mathematical analysis ; Numerical stability ; Optical waveguides ; Quantum electronics ; Stability ; Stability criteria ; Transmission line matrix methods ; Waveguides</subject><ispartof>IEEE journal of quantum electronics, 2014-10, Vol.50 (10), p.808-814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</citedby><cites>FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6878410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6878410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tran, Thang Q.</creatorcontrib><creatorcontrib>Kim, Sangin</creatorcontrib><title>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.</description><subject>Approximants</subject><subject>Beams (radiation)</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Indexes</subject><subject>Mathematical analysis</subject><subject>Numerical stability</subject><subject>Optical waveguides</subject><subject>Quantum electronics</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Transmission line matrix methods</subject><subject>Waveguides</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1PwzAMxSMEEmNwR-JSiQuXjrhJmvYI08aHhvgWxyhN3ZGpa0bTIu2_J2MTB-SDZev3rOdHyCnQEQDNL--fJ6OEAh8ljEsmYY8MQIgsBglsnwwohSzOIZeH5Mj7RRg5z-iAvLx2urC17dbR2DWl7axrIldFU9vYDuNJjUtsuuga9TJ6at1Kz_Uv8oDdpyt9ZJto5rxfRx_6G-e9LdEfk4NK1x5Pdn1I3qeTt_FtPHu8uRtfzWLDctrFRW7KVGhZMJAZ1UYYUwXfCWrOK2AmrFOtmWaJLMrSSCFMmpsiMyCZxlyzIbnY3l217qtH36ml9QbrWjfoeq8gTSjNQ8mAnv9DF65vm-BOgUiFEDzhECi6pUwbXmqxUqvWLnW7VkDVJmQVQlabkNUu5CA520osIv7haSYzDpT9AOmRd8A</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Tran, Thang Q.</creator><creator>Kim, Sangin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141001</creationdate><title>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</title><author>Tran, Thang Q. ; Kim, Sangin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximants</topic><topic>Beams (radiation)</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Indexes</topic><topic>Mathematical analysis</topic><topic>Numerical stability</topic><topic>Optical waveguides</topic><topic>Quantum electronics</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Transmission line matrix methods</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thang Q.</creatorcontrib><creatorcontrib>Kim, Sangin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tran, Thang Q.</au><au>Kim, Sangin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>50</volume><issue>10</issue><spage>808</spage><epage>814</epage><pages>808-814</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JQE.2014.2347371</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2014-10, Vol.50 (10), p.808-814 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_journals_1565554241 |
source | IEEE Electronic Library (IEL) |
subjects | Approximants Beams (radiation) Finite element analysis Finite element method Indexes Mathematical analysis Numerical stability Optical waveguides Quantum electronics Stability Stability criteria Transmission line matrix methods Waveguides |
title | Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Condition%20of%20Finite-Element%20Beam%20Propagation%20Methods%20in%20Lossy%20Waveguides&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Tran,%20Thang%20Q.&rft.date=2014-10-01&rft.volume=50&rft.issue=10&rft.spage=808&rft.epage=814&rft.pages=808-814&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2014.2347371&rft_dat=%3Cproquest_RIE%3E3443722461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565554241&rft_id=info:pmid/&rft_ieee_id=6878410&rfr_iscdi=true |