Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides

A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2014-10, Vol.50 (10), p.808-814
Hauptverfasser: Tran, Thang Q., Kim, Sangin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue 10
container_start_page 808
container_title IEEE journal of quantum electronics
container_volume 50
creator Tran, Thang Q.
Kim, Sangin
description A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.
doi_str_mv 10.1109/JQE.2014.2347371
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1565554241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6878410</ieee_id><sourcerecordid>3443722461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</originalsourceid><addsrcrecordid>eNpdkM1PwzAMxSMEEmNwR-JSiQuXjrhJmvYI08aHhvgWxyhN3ZGpa0bTIu2_J2MTB-SDZev3rOdHyCnQEQDNL--fJ6OEAh8ljEsmYY8MQIgsBglsnwwohSzOIZeH5Mj7RRg5z-iAvLx2urC17dbR2DWl7axrIldFU9vYDuNJjUtsuuga9TJ6at1Kz_Uv8oDdpyt9ZJto5rxfRx_6G-e9LdEfk4NK1x5Pdn1I3qeTt_FtPHu8uRtfzWLDctrFRW7KVGhZMJAZ1UYYUwXfCWrOK2AmrFOtmWaJLMrSSCFMmpsiMyCZxlyzIbnY3l217qtH36ml9QbrWjfoeq8gTSjNQ8mAnv9DF65vm-BOgUiFEDzhECi6pUwbXmqxUqvWLnW7VkDVJmQVQlabkNUu5CA520osIv7haSYzDpT9AOmRd8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565554241</pqid></control><display><type>article</type><title>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</title><source>IEEE Electronic Library (IEL)</source><creator>Tran, Thang Q. ; Kim, Sangin</creator><creatorcontrib>Tran, Thang Q. ; Kim, Sangin</creatorcontrib><description>A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2014.2347371</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximants ; Beams (radiation) ; Finite element analysis ; Finite element method ; Indexes ; Mathematical analysis ; Numerical stability ; Optical waveguides ; Quantum electronics ; Stability ; Stability criteria ; Transmission line matrix methods ; Waveguides</subject><ispartof>IEEE journal of quantum electronics, 2014-10, Vol.50 (10), p.808-814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</citedby><cites>FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6878410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6878410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tran, Thang Q.</creatorcontrib><creatorcontrib>Kim, Sangin</creatorcontrib><title>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.</description><subject>Approximants</subject><subject>Beams (radiation)</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Indexes</subject><subject>Mathematical analysis</subject><subject>Numerical stability</subject><subject>Optical waveguides</subject><subject>Quantum electronics</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Transmission line matrix methods</subject><subject>Waveguides</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1PwzAMxSMEEmNwR-JSiQuXjrhJmvYI08aHhvgWxyhN3ZGpa0bTIu2_J2MTB-SDZev3rOdHyCnQEQDNL--fJ6OEAh8ljEsmYY8MQIgsBglsnwwohSzOIZeH5Mj7RRg5z-iAvLx2urC17dbR2DWl7axrIldFU9vYDuNJjUtsuuga9TJ6at1Kz_Uv8oDdpyt9ZJto5rxfRx_6G-e9LdEfk4NK1x5Pdn1I3qeTt_FtPHu8uRtfzWLDctrFRW7KVGhZMJAZ1UYYUwXfCWrOK2AmrFOtmWaJLMrSSCFMmpsiMyCZxlyzIbnY3l217qtH36ml9QbrWjfoeq8gTSjNQ8mAnv9DF65vm-BOgUiFEDzhECi6pUwbXmqxUqvWLnW7VkDVJmQVQlabkNUu5CA520osIv7haSYzDpT9AOmRd8A</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Tran, Thang Q.</creator><creator>Kim, Sangin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141001</creationdate><title>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</title><author>Tran, Thang Q. ; Kim, Sangin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b9cd65a7b31780ac5ccf3712ea44f13c3176aa3a327bddc755c69cb8c173ae9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximants</topic><topic>Beams (radiation)</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Indexes</topic><topic>Mathematical analysis</topic><topic>Numerical stability</topic><topic>Optical waveguides</topic><topic>Quantum electronics</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Transmission line matrix methods</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thang Q.</creatorcontrib><creatorcontrib>Kim, Sangin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tran, Thang Q.</au><au>Kim, Sangin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>50</volume><issue>10</issue><spage>808</spage><epage>814</epage><pages>808-814</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A simple tool for evaluating the stability of the finite-element beam propagation method (FEBPM) for lossy waveguides is described. Current stability issues are explained by this method. The sufficient stability condition of the FEBPM is described. The stability of the analytical propagation function, the Crank-Nicolson propagation scheme, and various Padé approximants are analyzed using the tool. The dependence of the stability of the FEBPM on the propagation step size is also noted.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JQE.2014.2347371</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2014-10, Vol.50 (10), p.808-814
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_journals_1565554241
source IEEE Electronic Library (IEL)
subjects Approximants
Beams (radiation)
Finite element analysis
Finite element method
Indexes
Mathematical analysis
Numerical stability
Optical waveguides
Quantum electronics
Stability
Stability criteria
Transmission line matrix methods
Waveguides
title Stability Condition of Finite-Element Beam Propagation Methods in Lossy Waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Condition%20of%20Finite-Element%20Beam%20Propagation%20Methods%20in%20Lossy%20Waveguides&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Tran,%20Thang%20Q.&rft.date=2014-10-01&rft.volume=50&rft.issue=10&rft.spage=808&rft.epage=814&rft.pages=808-814&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2014.2347371&rft_dat=%3Cproquest_RIE%3E3443722461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565554241&rft_id=info:pmid/&rft_ieee_id=6878410&rfr_iscdi=true