Multi-D Wavelet Filter Bank Design Using Quillen-Suslin Theorem for Laurent Polynomials

In this paper we present a new approach for constructing the wavelet filter bank. Our approach enables constructing nonseparable multidimensional non-redundant wavelet filter banks with FIR filters using the Quillen-Suslin Theorem for Laurent polynomials. Our construction method presents some advant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-10, Vol.62 (20), p.5348-5358
Hauptverfasser: Hur, Youngmi, Park, Hyungju, Zheng, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a new approach for constructing the wavelet filter bank. Our approach enables constructing nonseparable multidimensional non-redundant wavelet filter banks with FIR filters using the Quillen-Suslin Theorem for Laurent polynomials. Our construction method presents some advantages over the traditional methods of multidimensional wavelet filter bank design. First, it works for any spatial dimension and for any sampling matrix. Second, it does not require the initial lowpass filters to satisfy any additional assumption such as interpolatory condition. Third, it provides an algorithm for constructing a wavelet filter bank from a single lowpass filter so that its vanishing moments are at least as many as the accuracy number of the lowpass filter.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2347263