Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs

In a text context, document/query expansion has proven very useful in retrieving objects semantically related to the query. However, when applying text-based techniques on spoken content, the inevitable recognition errors seriously degrade performance even when the retrieval process is performed ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2014-01, Vol.22 (1), p.80-94
Hauptverfasser: Lee, Hung-Yi, Lee, Lin-Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 80
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 22
creator Lee, Hung-Yi
Lee, Lin-Shan
description In a text context, document/query expansion has proven very useful in retrieving objects semantically related to the query. However, when applying text-based techniques on spoken content, the inevitable recognition errors seriously degrade performance even when the retrieval process is performed over lattices. We propose the estimation of more accurate term distributions (or unigram language models) for the spoken documents by acoustic similarity graphs. In this approach, a graph is constructed for each term describing the acoustic similarity among all signal regions hypothesized to be the considered term. Score propagation based on a random walk over the graph offers more reliable scores of the term hypotheses, which in turn yield more accurate term distributions (or unigram language models). This approach was applied with the language modeling retrieval approach, including using document expansion based on latent topic analysis and query expansion with a query-regularized mixture model. We extend these approaches from words to subword n-grams, and the query expansion from document-level to utterance-level and from term-based to topic-based. Experiments performed on Mandarin broadcast news showed improved performance under almost all tested conditions.
doi_str_mv 10.1109/TASLP.2013.2285469
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1564752874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6633083</ieee_id><sourcerecordid>3442349621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-cde0e3c99c3e017211a14c13b5c096e446fe430475cca7bd61e1fb3f820bda863</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhRujiUT5A7qZxHVhHn3NkiAiCQlKMS6b6fQ2DLSdOtOi9ddbBF3dszjfuTnHce4IHhGC-XgziZcvI4oJG1Ea-V7AL5wBZZS7nGHv8k9Tjq-dobU7jDHBIeehN3C-F2Vt9AEyFEMpqkZJtIbGKDiIAukcxbXeQ4WmumqgalDaoUct27LX49cWTIdmX7WorNIV-lTNFq1FlekSvYtij1YHMGgidWuPsbEqVSGMajo0N6Le2lvnKheFheH53jhvT7PN9NldruaL6WTpSsr9xpUZYGCSc8kAk5ASIognCUt9iXkAnhfk4PU9Q19KEaZZQIDkKcsjitNMRAG7cR5OuX3RjxZsk-x0a6r-ZUL8oOdoFHq9i55c0mhrDeRJbVQpTJcQnBxnTn5nTo4zJ-eZe-j-BCkA-AeCgDEcMfYDSQR6rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564752874</pqid></control><display><type>article</type><title>Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Hung-Yi ; Lee, Lin-Shan</creator><creatorcontrib>Lee, Hung-Yi ; Lee, Lin-Shan</creatorcontrib><description>In a text context, document/query expansion has proven very useful in retrieving objects semantically related to the query. However, when applying text-based techniques on spoken content, the inevitable recognition errors seriously degrade performance even when the retrieval process is performed over lattices. We propose the estimation of more accurate term distributions (or unigram language models) for the spoken documents by acoustic similarity graphs. In this approach, a graph is constructed for each term describing the acoustic similarity among all signal regions hypothesized to be the considered term. Score propagation based on a random walk over the graph offers more reliable scores of the term hypotheses, which in turn yield more accurate term distributions (or unigram language models). This approach was applied with the language modeling retrieval approach, including using document expansion based on latent topic analysis and query expansion with a query-regularized mixture model. We extend these approaches from words to subword n-grams, and the query expansion from document-level to utterance-level and from term-based to topic-based. Experiments performed on Mandarin broadcast news showed improved performance under almost all tested conditions.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2013.2285469</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Analytical models ; Document expansion ; Estimation ; Information retrieval ; latent semantic analysis ; Lattices ; Materials ; query expansion ; random walk ; Semantics ; spoken content retrieval</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2014-01, Vol.22 (1), p.80-94</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-cde0e3c99c3e017211a14c13b5c096e446fe430475cca7bd61e1fb3f820bda863</citedby><cites>FETCH-LOGICAL-c295t-cde0e3c99c3e017211a14c13b5c096e446fe430475cca7bd61e1fb3f820bda863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6633083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6633083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Hung-Yi</creatorcontrib><creatorcontrib>Lee, Lin-Shan</creatorcontrib><title>Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>In a text context, document/query expansion has proven very useful in retrieving objects semantically related to the query. However, when applying text-based techniques on spoken content, the inevitable recognition errors seriously degrade performance even when the retrieval process is performed over lattices. We propose the estimation of more accurate term distributions (or unigram language models) for the spoken documents by acoustic similarity graphs. In this approach, a graph is constructed for each term describing the acoustic similarity among all signal regions hypothesized to be the considered term. Score propagation based on a random walk over the graph offers more reliable scores of the term hypotheses, which in turn yield more accurate term distributions (or unigram language models). This approach was applied with the language modeling retrieval approach, including using document expansion based on latent topic analysis and query expansion with a query-regularized mixture model. We extend these approaches from words to subword n-grams, and the query expansion from document-level to utterance-level and from term-based to topic-based. Experiments performed on Mandarin broadcast news showed improved performance under almost all tested conditions.</description><subject>Acoustics</subject><subject>Analytical models</subject><subject>Document expansion</subject><subject>Estimation</subject><subject>Information retrieval</subject><subject>latent semantic analysis</subject><subject>Lattices</subject><subject>Materials</subject><subject>query expansion</subject><subject>random walk</subject><subject>Semantics</subject><subject>spoken content retrieval</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwkAUhRujiUT5A7qZxHVhHn3NkiAiCQlKMS6b6fQ2DLSdOtOi9ddbBF3dszjfuTnHce4IHhGC-XgziZcvI4oJG1Ea-V7AL5wBZZS7nGHv8k9Tjq-dobU7jDHBIeehN3C-F2Vt9AEyFEMpqkZJtIbGKDiIAukcxbXeQ4WmumqgalDaoUct27LX49cWTIdmX7WorNIV-lTNFq1FlekSvYtij1YHMGgidWuPsbEqVSGMajo0N6Le2lvnKheFheH53jhvT7PN9NldruaL6WTpSsr9xpUZYGCSc8kAk5ASIognCUt9iXkAnhfk4PU9Q19KEaZZQIDkKcsjitNMRAG7cR5OuX3RjxZsk-x0a6r-ZUL8oOdoFHq9i55c0mhrDeRJbVQpTJcQnBxnTn5nTo4zJ-eZe-j-BCkA-AeCgDEcMfYDSQR6rA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Lee, Hung-Yi</creator><creator>Lee, Lin-Shan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs</title><author>Lee, Hung-Yi ; Lee, Lin-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-cde0e3c99c3e017211a14c13b5c096e446fe430475cca7bd61e1fb3f820bda863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Analytical models</topic><topic>Document expansion</topic><topic>Estimation</topic><topic>Information retrieval</topic><topic>latent semantic analysis</topic><topic>Lattices</topic><topic>Materials</topic><topic>query expansion</topic><topic>random walk</topic><topic>Semantics</topic><topic>spoken content retrieval</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hung-Yi</creatorcontrib><creatorcontrib>Lee, Lin-Shan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Hung-Yi</au><au>Lee, Lin-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2014-01</date><risdate>2014</risdate><volume>22</volume><issue>1</issue><spage>80</spage><epage>94</epage><pages>80-94</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>In a text context, document/query expansion has proven very useful in retrieving objects semantically related to the query. However, when applying text-based techniques on spoken content, the inevitable recognition errors seriously degrade performance even when the retrieval process is performed over lattices. We propose the estimation of more accurate term distributions (or unigram language models) for the spoken documents by acoustic similarity graphs. In this approach, a graph is constructed for each term describing the acoustic similarity among all signal regions hypothesized to be the considered term. Score propagation based on a random walk over the graph offers more reliable scores of the term hypotheses, which in turn yield more accurate term distributions (or unigram language models). This approach was applied with the language modeling retrieval approach, including using document expansion based on latent topic analysis and query expansion with a query-regularized mixture model. We extend these approaches from words to subword n-grams, and the query expansion from document-level to utterance-level and from term-based to topic-based. Experiments performed on Mandarin broadcast news showed improved performance under almost all tested conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2013.2285469</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2014-01, Vol.22 (1), p.80-94
issn 2329-9290
2329-9304
language eng
recordid cdi_proquest_journals_1564752874
source IEEE Electronic Library (IEL)
subjects Acoustics
Analytical models
Document expansion
Estimation
Information retrieval
latent semantic analysis
Lattices
Materials
query expansion
random walk
Semantics
spoken content retrieval
title Improved Semantic Retrieval of Spoken Content by Document/Query Expansion with Random Walk Over Acoustic Similarity Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Semantic%20Retrieval%20of%20Spoken%20Content%20by%20Document/Query%20Expansion%20with%20Random%20Walk%20Over%20Acoustic%20Similarity%20Graphs&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Lee,%20Hung-Yi&rft.date=2014-01&rft.volume=22&rft.issue=1&rft.spage=80&rft.epage=94&rft.pages=80-94&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASLP.2013.2285469&rft_dat=%3Cproquest_RIE%3E3442349621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564752874&rft_id=info:pmid/&rft_ieee_id=6633083&rfr_iscdi=true