CO2-blown nanocellular foams

ABSTRACT Polymeric nanocellular foams are broadly defined as having cell size below one micron. However, it is only when cell size reaches 100 nm or less that unique thermal conductivity, dielectric constant, optical, or mechanical properties are expected due to gas confinement in the cells or polym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2014-12, Vol.131 (23), p.n/a
1. Verfasser: Costeux, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Journal of applied polymer science
container_volume 131
creator Costeux, Stéphane
description ABSTRACT Polymeric nanocellular foams are broadly defined as having cell size below one micron. However, it is only when cell size reaches 100 nm or less that unique thermal conductivity, dielectric constant, optical, or mechanical properties are expected due to gas confinement in the cells or polymer confinement in the cell walls. Producing such materials with low density by physical foaming with CO2 requires the controlled nucleation and growth of 1015−1016 cells/cm3. This is a formidable challenge that necessitates new foaming strategies. This review provides a description of processes, conditions, and polymer systems that have been employed over the past 15 years to achieve increasingly higher cell densities and expansion ratio, culminating with the recent development of low density nanofoams and of nanostructured polymers in which nucleation can be precisely controlled. Remaining barriers to scale‐up are summarized. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41293.
doi_str_mv 10.1002/app.41293
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1561090011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3427625921</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3993-cc367abda4b8ad7a8661c9379ea5b028ced62ac8c42e4dddcae173a27c1a4ada3</originalsourceid><addsrcrecordid>eNo9j01Lw0AQhhdRMFYP3j0UPG-7H8l-HEuwVSg2gprjMtndSmqaxKSh7b83bcTTDMz7zMyD0D0lE0oIm0JdT0LKNL9AASVa4lAwdYmCfkax0jq6RjdtuyGE0oiIAD3EK4azotqX4xLKyvqi6ApoxusKtu0tulpD0fq7vzpCH_On9_gZL1eLl3i2xF9ca46t5UJC5iDMFDgJSghqNZfaQ5QRpqx3goFVNmQ-dM5Z8FRyYNJSCMEBH6HHYW_dVD-db3dmU3VN2Z80NBK9xundPjUdUvu88EdTN_kWmqOhxJzMTW9uzuZmliTnpifwQOTtzh_-CWi-jZBcRiZ9XZjPJJ2r9E2YhP8C91JbxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561090011</pqid></control><display><type>article</type><title>CO2-blown nanocellular foams</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Costeux, Stéphane</creator><creatorcontrib>Costeux, Stéphane</creatorcontrib><description>ABSTRACT Polymeric nanocellular foams are broadly defined as having cell size below one micron. However, it is only when cell size reaches 100 nm or less that unique thermal conductivity, dielectric constant, optical, or mechanical properties are expected due to gas confinement in the cells or polymer confinement in the cell walls. Producing such materials with low density by physical foaming with CO2 requires the controlled nucleation and growth of 1015−1016 cells/cm3. This is a formidable challenge that necessitates new foaming strategies. This review provides a description of processes, conditions, and polymer systems that have been employed over the past 15 years to achieve increasingly higher cell densities and expansion ratio, culminating with the recent development of low density nanofoams and of nanostructured polymers in which nucleation can be precisely controlled. Remaining barriers to scale‐up are summarized. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41293.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.41293</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>foams ; Materials science ; nanostructured polymers ; Polymers ; porous materials ; thermal properties</subject><ispartof>Journal of applied polymer science, 2014-12, Vol.131 (23), p.n/a</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.41293$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.41293$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Costeux, Stéphane</creatorcontrib><title>CO2-blown nanocellular foams</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>ABSTRACT Polymeric nanocellular foams are broadly defined as having cell size below one micron. However, it is only when cell size reaches 100 nm or less that unique thermal conductivity, dielectric constant, optical, or mechanical properties are expected due to gas confinement in the cells or polymer confinement in the cell walls. Producing such materials with low density by physical foaming with CO2 requires the controlled nucleation and growth of 1015−1016 cells/cm3. This is a formidable challenge that necessitates new foaming strategies. This review provides a description of processes, conditions, and polymer systems that have been employed over the past 15 years to achieve increasingly higher cell densities and expansion ratio, culminating with the recent development of low density nanofoams and of nanostructured polymers in which nucleation can be precisely controlled. Remaining barriers to scale‐up are summarized. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41293.</description><subject>foams</subject><subject>Materials science</subject><subject>nanostructured polymers</subject><subject>Polymers</subject><subject>porous materials</subject><subject>thermal properties</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AQhhdRMFYP3j0UPG-7H8l-HEuwVSg2gprjMtndSmqaxKSh7b83bcTTDMz7zMyD0D0lE0oIm0JdT0LKNL9AASVa4lAwdYmCfkax0jq6RjdtuyGE0oiIAD3EK4azotqX4xLKyvqi6ApoxusKtu0tulpD0fq7vzpCH_On9_gZL1eLl3i2xF9ca46t5UJC5iDMFDgJSghqNZfaQ5QRpqx3goFVNmQ-dM5Z8FRyYNJSCMEBH6HHYW_dVD-db3dmU3VN2Z80NBK9xundPjUdUvu88EdTN_kWmqOhxJzMTW9uzuZmliTnpifwQOTtzh_-CWi-jZBcRiZ9XZjPJJ2r9E2YhP8C91JbxA</recordid><startdate>20141205</startdate><enddate>20141205</enddate><creator>Costeux, Stéphane</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20141205</creationdate><title>CO2-blown nanocellular foams</title><author>Costeux, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3993-cc367abda4b8ad7a8661c9379ea5b028ced62ac8c42e4dddcae173a27c1a4ada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>foams</topic><topic>Materials science</topic><topic>nanostructured polymers</topic><topic>Polymers</topic><topic>porous materials</topic><topic>thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costeux, Stéphane</creatorcontrib><collection>Istex</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costeux, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2-blown nanocellular foams</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2014-12-05</date><risdate>2014</risdate><volume>131</volume><issue>23</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>ABSTRACT Polymeric nanocellular foams are broadly defined as having cell size below one micron. However, it is only when cell size reaches 100 nm or less that unique thermal conductivity, dielectric constant, optical, or mechanical properties are expected due to gas confinement in the cells or polymer confinement in the cell walls. Producing such materials with low density by physical foaming with CO2 requires the controlled nucleation and growth of 1015−1016 cells/cm3. This is a formidable challenge that necessitates new foaming strategies. This review provides a description of processes, conditions, and polymer systems that have been employed over the past 15 years to achieve increasingly higher cell densities and expansion ratio, culminating with the recent development of low density nanofoams and of nanostructured polymers in which nucleation can be precisely controlled. Remaining barriers to scale‐up are summarized. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41293.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/app.41293</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2014-12, Vol.131 (23), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_1561090011
source Wiley Online Library Journals Frontfile Complete
subjects foams
Materials science
nanostructured polymers
Polymers
porous materials
thermal properties
title CO2-blown nanocellular foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2-blown%20nanocellular%20foams&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Costeux,%20St%C3%A9phane&rft.date=2014-12-05&rft.volume=131&rft.issue=23&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.41293&rft_dat=%3Cproquest_wiley%3E3427625921%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561090011&rft_id=info:pmid/&rfr_iscdi=true