Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis
Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken....
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2014-09, Vol.18 (5), p.1560-1570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1570 |
---|---|
container_issue | 5 |
container_start_page | 1560 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 18 |
creator | Stanculescu, Ioan Williams, Christopher K. I. Freer, Yvonne |
description | Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh. |
doi_str_mv | 10.1109/JBHI.2013.2294692 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1560327809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6680664</ieee_id><sourcerecordid>1560585060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</originalsourceid><addsrcrecordid>eNpdkE1PwkAQQDdGIwT5AcbEbOLFS3E_utvdIyIKBvCgnpttO9Vi6eJuS8K_twh4cC4zmXkzmTyELikZUEr03fP9ZDpghPIBYzqUmp2gLqNSBYwRdXqsqQ47qO_9krSh2paW56jDBNVMSNVFi2FTWwcfDrwvNoAnRZZBhefGfdkNntsMSo9z63D9CXhsXLnFD1BDWhe2wjbHC7CVqU2JX2HtC3-BznJTeugfcg-9P47fRpNg9vI0HQ1nQco1qwOVA5OCKZEQKVQKieBaCKqoNjlNIpBGJ4pHghmIdJZHIVEJD9NQpUkSEk54D93u766d_W7A1_Gq8CmUpanANj6mQhKhBJE79OYfurSNq9rvfinOIkV0S9E9lTrrvYM8XrtiZdw2piTe-Y53vuOd7_jgu925PlxukhVkfxtHuy1wtQcKAPgbS6mIlCH_AZjMgbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560327809</pqid></control><display><type>article</type><title>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</title><source>IEEE Electronic Library (IEL)</source><creator>Stanculescu, Ioan ; Williams, Christopher K. I. ; Freer, Yvonne</creator><creatorcontrib>Stanculescu, Ioan ; Williams, Christopher K. I. ; Freer, Yvonne</creatorcontrib><description>Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2013.2294692</identifier><identifier>PMID: 25192568</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Autoregressive hidden Markov model (AR-HMM) ; Biomedical monitoring ; Blood ; Bradycardia ; Data models ; Heart Rate ; Hidden Markov models ; Humans ; Infant, Newborn ; Infant, Newborn, Diseases - diagnosis ; Infant, Newborn, Diseases - epidemiology ; Intensive care ; Markov Chains ; Models, Statistical ; Monitoring ; Monitoring, Physiologic - methods ; neonatal sepsis ; Oxygen - blood ; Pediatrics ; real-time inference ; ROC Curve ; Sepsis ; Sepsis - diagnosis ; Sepsis - epidemiology</subject><ispartof>IEEE journal of biomedical and health informatics, 2014-09, Vol.18 (5), p.1560-1570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</citedby><cites>FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6680664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6680664$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanculescu, Ioan</creatorcontrib><creatorcontrib>Williams, Christopher K. I.</creatorcontrib><creatorcontrib>Freer, Yvonne</creatorcontrib><title>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.</description><subject>Autoregressive hidden Markov model (AR-HMM)</subject><subject>Biomedical monitoring</subject><subject>Blood</subject><subject>Bradycardia</subject><subject>Data models</subject><subject>Heart Rate</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Infant, Newborn, Diseases - diagnosis</subject><subject>Infant, Newborn, Diseases - epidemiology</subject><subject>Intensive care</subject><subject>Markov Chains</subject><subject>Models, Statistical</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic - methods</subject><subject>neonatal sepsis</subject><subject>Oxygen - blood</subject><subject>Pediatrics</subject><subject>real-time inference</subject><subject>ROC Curve</subject><subject>Sepsis</subject><subject>Sepsis - diagnosis</subject><subject>Sepsis - epidemiology</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PwkAQQDdGIwT5AcbEbOLFS3E_utvdIyIKBvCgnpttO9Vi6eJuS8K_twh4cC4zmXkzmTyELikZUEr03fP9ZDpghPIBYzqUmp2gLqNSBYwRdXqsqQ47qO_9krSh2paW56jDBNVMSNVFi2FTWwcfDrwvNoAnRZZBhefGfdkNntsMSo9z63D9CXhsXLnFD1BDWhe2wjbHC7CVqU2JX2HtC3-BznJTeugfcg-9P47fRpNg9vI0HQ1nQco1qwOVA5OCKZEQKVQKieBaCKqoNjlNIpBGJ4pHghmIdJZHIVEJD9NQpUkSEk54D93u766d_W7A1_Gq8CmUpanANj6mQhKhBJE79OYfurSNq9rvfinOIkV0S9E9lTrrvYM8XrtiZdw2piTe-Y53vuOd7_jgu925PlxukhVkfxtHuy1wtQcKAPgbS6mIlCH_AZjMgbA</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Stanculescu, Ioan</creator><creator>Williams, Christopher K. I.</creator><creator>Freer, Yvonne</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</title><author>Stanculescu, Ioan ; Williams, Christopher K. I. ; Freer, Yvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Autoregressive hidden Markov model (AR-HMM)</topic><topic>Biomedical monitoring</topic><topic>Blood</topic><topic>Bradycardia</topic><topic>Data models</topic><topic>Heart Rate</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Infant, Newborn, Diseases - diagnosis</topic><topic>Infant, Newborn, Diseases - epidemiology</topic><topic>Intensive care</topic><topic>Markov Chains</topic><topic>Models, Statistical</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic - methods</topic><topic>neonatal sepsis</topic><topic>Oxygen - blood</topic><topic>Pediatrics</topic><topic>real-time inference</topic><topic>ROC Curve</topic><topic>Sepsis</topic><topic>Sepsis - diagnosis</topic><topic>Sepsis - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanculescu, Ioan</creatorcontrib><creatorcontrib>Williams, Christopher K. I.</creatorcontrib><creatorcontrib>Freer, Yvonne</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stanculescu, Ioan</au><au>Williams, Christopher K. I.</au><au>Freer, Yvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2014-09</date><risdate>2014</risdate><volume>18</volume><issue>5</issue><spage>1560</spage><epage>1570</epage><pages>1560-1570</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25192568</pmid><doi>10.1109/JBHI.2013.2294692</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2014-09, Vol.18 (5), p.1560-1570 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_1560327809 |
source | IEEE Electronic Library (IEL) |
subjects | Autoregressive hidden Markov model (AR-HMM) Biomedical monitoring Blood Bradycardia Data models Heart Rate Hidden Markov models Humans Infant, Newborn Infant, Newborn, Diseases - diagnosis Infant, Newborn, Diseases - epidemiology Intensive care Markov Chains Models, Statistical Monitoring Monitoring, Physiologic - methods neonatal sepsis Oxygen - blood Pediatrics real-time inference ROC Curve Sepsis Sepsis - diagnosis Sepsis - epidemiology |
title | Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoregressive%20Hidden%20Markov%20Models%20for%20the%20Early%20Detection%20of%20Neonatal%20Sepsis&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Stanculescu,%20Ioan&rft.date=2014-09&rft.volume=18&rft.issue=5&rft.spage=1560&rft.epage=1570&rft.pages=1560-1570&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2013.2294692&rft_dat=%3Cproquest_RIE%3E1560585060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560327809&rft_id=info:pmid/25192568&rft_ieee_id=6680664&rfr_iscdi=true |