Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis

Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2014-09, Vol.18 (5), p.1560-1570
Hauptverfasser: Stanculescu, Ioan, Williams, Christopher K. I., Freer, Yvonne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1570
container_issue 5
container_start_page 1560
container_title IEEE journal of biomedical and health informatics
container_volume 18
creator Stanculescu, Ioan
Williams, Christopher K. I.
Freer, Yvonne
description Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.
doi_str_mv 10.1109/JBHI.2013.2294692
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1560327809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6680664</ieee_id><sourcerecordid>1560585060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</originalsourceid><addsrcrecordid>eNpdkE1PwkAQQDdGIwT5AcbEbOLFS3E_utvdIyIKBvCgnpttO9Vi6eJuS8K_twh4cC4zmXkzmTyELikZUEr03fP9ZDpghPIBYzqUmp2gLqNSBYwRdXqsqQ47qO_9krSh2paW56jDBNVMSNVFi2FTWwcfDrwvNoAnRZZBhefGfdkNntsMSo9z63D9CXhsXLnFD1BDWhe2wjbHC7CVqU2JX2HtC3-BznJTeugfcg-9P47fRpNg9vI0HQ1nQco1qwOVA5OCKZEQKVQKieBaCKqoNjlNIpBGJ4pHghmIdJZHIVEJD9NQpUkSEk54D93u766d_W7A1_Gq8CmUpanANj6mQhKhBJE79OYfurSNq9rvfinOIkV0S9E9lTrrvYM8XrtiZdw2piTe-Y53vuOd7_jgu925PlxukhVkfxtHuy1wtQcKAPgbS6mIlCH_AZjMgbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560327809</pqid></control><display><type>article</type><title>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</title><source>IEEE Electronic Library (IEL)</source><creator>Stanculescu, Ioan ; Williams, Christopher K. I. ; Freer, Yvonne</creator><creatorcontrib>Stanculescu, Ioan ; Williams, Christopher K. I. ; Freer, Yvonne</creatorcontrib><description>Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2013.2294692</identifier><identifier>PMID: 25192568</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Autoregressive hidden Markov model (AR-HMM) ; Biomedical monitoring ; Blood ; Bradycardia ; Data models ; Heart Rate ; Hidden Markov models ; Humans ; Infant, Newborn ; Infant, Newborn, Diseases - diagnosis ; Infant, Newborn, Diseases - epidemiology ; Intensive care ; Markov Chains ; Models, Statistical ; Monitoring ; Monitoring, Physiologic - methods ; neonatal sepsis ; Oxygen - blood ; Pediatrics ; real-time inference ; ROC Curve ; Sepsis ; Sepsis - diagnosis ; Sepsis - epidemiology</subject><ispartof>IEEE journal of biomedical and health informatics, 2014-09, Vol.18 (5), p.1560-1570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</citedby><cites>FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6680664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6680664$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanculescu, Ioan</creatorcontrib><creatorcontrib>Williams, Christopher K. I.</creatorcontrib><creatorcontrib>Freer, Yvonne</creatorcontrib><title>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.</description><subject>Autoregressive hidden Markov model (AR-HMM)</subject><subject>Biomedical monitoring</subject><subject>Blood</subject><subject>Bradycardia</subject><subject>Data models</subject><subject>Heart Rate</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Infant, Newborn, Diseases - diagnosis</subject><subject>Infant, Newborn, Diseases - epidemiology</subject><subject>Intensive care</subject><subject>Markov Chains</subject><subject>Models, Statistical</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic - methods</subject><subject>neonatal sepsis</subject><subject>Oxygen - blood</subject><subject>Pediatrics</subject><subject>real-time inference</subject><subject>ROC Curve</subject><subject>Sepsis</subject><subject>Sepsis - diagnosis</subject><subject>Sepsis - epidemiology</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PwkAQQDdGIwT5AcbEbOLFS3E_utvdIyIKBvCgnpttO9Vi6eJuS8K_twh4cC4zmXkzmTyELikZUEr03fP9ZDpghPIBYzqUmp2gLqNSBYwRdXqsqQ47qO_9krSh2paW56jDBNVMSNVFi2FTWwcfDrwvNoAnRZZBhefGfdkNntsMSo9z63D9CXhsXLnFD1BDWhe2wjbHC7CVqU2JX2HtC3-BznJTeugfcg-9P47fRpNg9vI0HQ1nQco1qwOVA5OCKZEQKVQKieBaCKqoNjlNIpBGJ4pHghmIdJZHIVEJD9NQpUkSEk54D93u766d_W7A1_Gq8CmUpanANj6mQhKhBJE79OYfurSNq9rvfinOIkV0S9E9lTrrvYM8XrtiZdw2piTe-Y53vuOd7_jgu925PlxukhVkfxtHuy1wtQcKAPgbS6mIlCH_AZjMgbA</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Stanculescu, Ioan</creator><creator>Williams, Christopher K. I.</creator><creator>Freer, Yvonne</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</title><author>Stanculescu, Ioan ; Williams, Christopher K. I. ; Freer, Yvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8fe265285b0658ceb539551819af1b7e6a9b83752ae79df7408b34c48cbb40303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Autoregressive hidden Markov model (AR-HMM)</topic><topic>Biomedical monitoring</topic><topic>Blood</topic><topic>Bradycardia</topic><topic>Data models</topic><topic>Heart Rate</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Infant, Newborn, Diseases - diagnosis</topic><topic>Infant, Newborn, Diseases - epidemiology</topic><topic>Intensive care</topic><topic>Markov Chains</topic><topic>Models, Statistical</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic - methods</topic><topic>neonatal sepsis</topic><topic>Oxygen - blood</topic><topic>Pediatrics</topic><topic>real-time inference</topic><topic>ROC Curve</topic><topic>Sepsis</topic><topic>Sepsis - diagnosis</topic><topic>Sepsis - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanculescu, Ioan</creatorcontrib><creatorcontrib>Williams, Christopher K. I.</creatorcontrib><creatorcontrib>Freer, Yvonne</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stanculescu, Ioan</au><au>Williams, Christopher K. I.</au><au>Freer, Yvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2014-09</date><risdate>2014</risdate><volume>18</volume><issue>5</issue><spage>1560</spage><epage>1570</epage><pages>1560-1570</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Late onset neonatal sepsis is one of the major clinical concerns when premature babies receive intensive care. Current practice relies on slow laboratory testing of blood cultures for diagnosis. A valuable research question is whether sepsis can be reliably detected before the blood sample is taken. This paper investigates the extent to which physiological events observed in the patient's monitoring traces could be used for the early detection of neonatal sepsis. We model the distribution of these events with an autoregressive hidden Markov model (AR-HMM). Both learning and inference carefully use domain knowledge to extract the baby's true physiology from the monitoring data. Our model can produce real-time predictions about the onset of the infection and also handles missing data. We evaluate the effectiveness of the AR-HMM for sepsis detection on a dataset collected from the Neonatal Intensive Care Unit at the Royal Infirmary of Edinburgh.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25192568</pmid><doi>10.1109/JBHI.2013.2294692</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2014-09, Vol.18 (5), p.1560-1570
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_1560327809
source IEEE Electronic Library (IEL)
subjects Autoregressive hidden Markov model (AR-HMM)
Biomedical monitoring
Blood
Bradycardia
Data models
Heart Rate
Hidden Markov models
Humans
Infant, Newborn
Infant, Newborn, Diseases - diagnosis
Infant, Newborn, Diseases - epidemiology
Intensive care
Markov Chains
Models, Statistical
Monitoring
Monitoring, Physiologic - methods
neonatal sepsis
Oxygen - blood
Pediatrics
real-time inference
ROC Curve
Sepsis
Sepsis - diagnosis
Sepsis - epidemiology
title Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoregressive%20Hidden%20Markov%20Models%20for%20the%20Early%20Detection%20of%20Neonatal%20Sepsis&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Stanculescu,%20Ioan&rft.date=2014-09&rft.volume=18&rft.issue=5&rft.spage=1560&rft.epage=1570&rft.pages=1560-1570&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2013.2294692&rft_dat=%3Cproquest_RIE%3E1560585060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560327809&rft_id=info:pmid/25192568&rft_ieee_id=6680664&rfr_iscdi=true