Wave turbulence in the two-layer ocean model

This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-10, Vol.756, p.309-327
Hauptverfasser: Harper, Katie L., Nazarenko, Sergey V., Medvedev, Sergey B., Connaughton, Colm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue
container_start_page 309
container_title Journal of fluid mechanics
container_volume 756
creator Harper, Katie L.
Nazarenko, Sergey V.
Medvedev, Sergey B.
Connaughton, Colm
description This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is already well known that in two-layers, energy is transferred via triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale, where barotropization takes place, and from there to the large-scale barotropic modes via an inverse transfer. However, by applying WT theory, we find that energy is transferred via dominant $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\{+--\}$ triads with one barotropic component and two baroclinic components, and that the direct transfer of energy is local and the inverse energy transfer is non-local. We study this non-locality using scale separation and obtain a system of coupled equations for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. Using the frequency resonance condition, we show that in the presence of the beta-effect this transfer is mostly anisotropic and mostly to the zonal component.
doi_str_mv 10.1017/jfm.2014.465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1558554446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_465</cupid><sourcerecordid>3418836661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6ed1f2f5ca377af193bf220910d0835005cb405d7e61776140f29722f03d66373</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRMFZ3_oCA2ybeO89mKcUXFNwoLofJPDQhjzpJlP57U9qFC1cHLt89Bz5CrhFyBFS3dWhzCshzLsUJSZDLIlOSi1OSAFCaIVI4JxfDUAMgg0IlZPluvn06TrGcGt9Zn1ZdOn7Ol58-a8zOx7S33nRp2zvfXJKzYJrBXx1zQd4e7l_XT9nm5fF5fbfJLOMwZtI7DDQIa5hSJmDBykApFAgOVkwACFtyEE55iUpJ5BBooSgNwJyUTLEFuTn0bmP_Nflh1HU_xW6e1CjESgjOuZyp5YGysR-G6IPexqo1cacR9N6Hnn3ovQ89-5jx_IibtoyV-_B_Wv97-AXAV19W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558554446</pqid></control><display><type>article</type><title>Wave turbulence in the two-layer ocean model</title><source>Cambridge University Press Journals Complete</source><creator>Harper, Katie L. ; Nazarenko, Sergey V. ; Medvedev, Sergey B. ; Connaughton, Colm</creator><creatorcontrib>Harper, Katie L. ; Nazarenko, Sergey V. ; Medvedev, Sergey B. ; Connaughton, Colm</creatorcontrib><description>This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is already well known that in two-layers, energy is transferred via triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale, where barotropization takes place, and from there to the large-scale barotropic modes via an inverse transfer. However, by applying WT theory, we find that energy is transferred via dominant $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\{+--\}$ triads with one barotropic component and two baroclinic components, and that the direct transfer of energy is local and the inverse energy transfer is non-local. We study this non-locality using scale separation and obtain a system of coupled equations for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. Using the frequency resonance condition, we show that in the presence of the beta-effect this transfer is mostly anisotropic and mostly to the zonal component.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.465</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Energy conservation ; Energy loss ; Energy transfer ; Fluid mechanics ; Oceanic turbulence ; Physical oceanography ; Propagation ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2014-10, Vol.756, p.309-327</ispartof><rights>2014 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6ed1f2f5ca377af193bf220910d0835005cb405d7e61776140f29722f03d66373</citedby><cites>FETCH-LOGICAL-c340t-6ed1f2f5ca377af193bf220910d0835005cb405d7e61776140f29722f03d66373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014004650/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Harper, Katie L.</creatorcontrib><creatorcontrib>Nazarenko, Sergey V.</creatorcontrib><creatorcontrib>Medvedev, Sergey B.</creatorcontrib><creatorcontrib>Connaughton, Colm</creatorcontrib><title>Wave turbulence in the two-layer ocean model</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is already well known that in two-layers, energy is transferred via triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale, where barotropization takes place, and from there to the large-scale barotropic modes via an inverse transfer. However, by applying WT theory, we find that energy is transferred via dominant $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\{+--\}$ triads with one barotropic component and two baroclinic components, and that the direct transfer of energy is local and the inverse energy transfer is non-local. We study this non-locality using scale separation and obtain a system of coupled equations for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. Using the frequency resonance condition, we show that in the presence of the beta-effect this transfer is mostly anisotropic and mostly to the zonal component.</description><subject>Energy conservation</subject><subject>Energy loss</subject><subject>Energy transfer</subject><subject>Fluid mechanics</subject><subject>Oceanic turbulence</subject><subject>Physical oceanography</subject><subject>Propagation</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLw0AUhQdRMFZ3_oCA2ybeO89mKcUXFNwoLofJPDQhjzpJlP57U9qFC1cHLt89Bz5CrhFyBFS3dWhzCshzLsUJSZDLIlOSi1OSAFCaIVI4JxfDUAMgg0IlZPluvn06TrGcGt9Zn1ZdOn7Ol58-a8zOx7S33nRp2zvfXJKzYJrBXx1zQd4e7l_XT9nm5fF5fbfJLOMwZtI7DDQIa5hSJmDBykApFAgOVkwACFtyEE55iUpJ5BBooSgNwJyUTLEFuTn0bmP_Nflh1HU_xW6e1CjESgjOuZyp5YGysR-G6IPexqo1cacR9N6Hnn3ovQ89-5jx_IibtoyV-_B_Wv97-AXAV19W</recordid><startdate>20141010</startdate><enddate>20141010</enddate><creator>Harper, Katie L.</creator><creator>Nazarenko, Sergey V.</creator><creator>Medvedev, Sergey B.</creator><creator>Connaughton, Colm</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20141010</creationdate><title>Wave turbulence in the two-layer ocean model</title><author>Harper, Katie L. ; Nazarenko, Sergey V. ; Medvedev, Sergey B. ; Connaughton, Colm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6ed1f2f5ca377af193bf220910d0835005cb405d7e61776140f29722f03d66373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Energy conservation</topic><topic>Energy loss</topic><topic>Energy transfer</topic><topic>Fluid mechanics</topic><topic>Oceanic turbulence</topic><topic>Physical oceanography</topic><topic>Propagation</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Katie L.</creatorcontrib><creatorcontrib>Nazarenko, Sergey V.</creatorcontrib><creatorcontrib>Medvedev, Sergey B.</creatorcontrib><creatorcontrib>Connaughton, Colm</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Katie L.</au><au>Nazarenko, Sergey V.</au><au>Medvedev, Sergey B.</au><au>Connaughton, Colm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave turbulence in the two-layer ocean model</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-10-10</date><risdate>2014</risdate><volume>756</volume><spage>309</spage><epage>327</epage><pages>309-327</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is already well known that in two-layers, energy is transferred via triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale, where barotropization takes place, and from there to the large-scale barotropic modes via an inverse transfer. However, by applying WT theory, we find that energy is transferred via dominant $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\{+--\}$ triads with one barotropic component and two baroclinic components, and that the direct transfer of energy is local and the inverse energy transfer is non-local. We study this non-locality using scale separation and obtain a system of coupled equations for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. Using the frequency resonance condition, we show that in the presence of the beta-effect this transfer is mostly anisotropic and mostly to the zonal component.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.465</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-10, Vol.756, p.309-327
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1558554446
source Cambridge University Press Journals Complete
subjects Energy conservation
Energy loss
Energy transfer
Fluid mechanics
Oceanic turbulence
Physical oceanography
Propagation
Turbulent flow
title Wave turbulence in the two-layer ocean model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20turbulence%20in%20the%20two-layer%20ocean%20model&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Harper,%20Katie%C2%A0L.&rft.date=2014-10-10&rft.volume=756&rft.spage=309&rft.epage=327&rft.pages=309-327&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2014.465&rft_dat=%3Cproquest_cross%3E3418836661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558554446&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_465&rfr_iscdi=true