Vortex filament method as a tool for computational visualization of quantum turbulence

The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-03, Vol.111 (Supplement 1), p.4667-4674
Hauptverfasser: Hänninen, Risto, Baggaley, Andrew W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4674
container_issue Supplement 1
container_start_page 4667
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Hänninen, Risto
Baggaley, Andrew W.
description The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear.
doi_str_mv 10.1073/pnas.1312535111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1558323267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771131</jstor_id><sourcerecordid>23771131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-c2b59992269bf400dac0567b7091c5cc9f3dd9c24043f634c1a93cf970c0e4ca3</originalsourceid><addsrcrecordid>eNpdkUtvFSEYhonR2GN17UpD4kYX03Idhk0T03hLmrhQuyUMA3ZOmGHKpdH--jI9x1N1RQjP98DLC8BLjE4wEvR0mXU6wRQTTjnG-BHYYCRx0zKJHoMNQkQ0HSPsCDxLaYsQkrxDT8ERYQKxTtANuLwMMdtf0I1eT3bOcLL5KgxQJ6hhDsFDFyI0YVpK1nkMs_bwZkxF-_H2fg-Dg9dFz7lMMJfYF29nY5-DJ077ZF_s12Pw4-OH7-efm4uvn76cv79oDGc0N4b0XEpJSCt7xxAatEG8Fb2oIQw3Rjo6DNIQhhh1LWUGa0mNkwIZZJnR9Bic7bxL6Sc7mJogaq-WOE46_lZBj-rfk3m8Uj_DjaLV0bW4Ct7uBTFcF5uymsZkrPd6tqEkhTlmjFIheEXf_IduQ4n1Q1aKd5RQ0opKne4oE0NK0brDYzBSa2dq7Uw9dFYnXv-d4cD_KakC7_bAOnnQYay-lWXxdu1NYcXa--tf7dhtyiE-uGqCehWmdytarE4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558323267</pqid></control><display><type>article</type><title>Vortex filament method as a tool for computational visualization of quantum turbulence</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hänninen, Risto ; Baggaley, Andrew W.</creator><creatorcontrib>Hänninen, Risto ; Baggaley, Andrew W.</creatorcontrib><description>The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1312535111</identifier><identifier>PMID: 24704873</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Counterflow ; Cylinders ; Energy spectrum ; Helium ; Kinetics ; Low temperature ; Physical Sciences ; Quantum physics ; Rotation ; Turbulence ; Turbulent flow ; Visualization ; Vortex filaments ; Vortices ; Vorticity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-03, Vol.111 (Supplement 1), p.4667-4674</ispartof><rights>Copyright National Academy of Sciences Mar 25, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-c2b59992269bf400dac0567b7091c5cc9f3dd9c24043f634c1a93cf970c0e4ca3</citedby><cites>FETCH-LOGICAL-c543t-c2b59992269bf400dac0567b7091c5cc9f3dd9c24043f634c1a93cf970c0e4ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/Supplement%201.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24704873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hänninen, Risto</creatorcontrib><creatorcontrib>Baggaley, Andrew W.</creatorcontrib><title>Vortex filament method as a tool for computational visualization of quantum turbulence</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear.</description><subject>Counterflow</subject><subject>Cylinders</subject><subject>Energy spectrum</subject><subject>Helium</subject><subject>Kinetics</subject><subject>Low temperature</subject><subject>Physical Sciences</subject><subject>Quantum physics</subject><subject>Rotation</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Visualization</subject><subject>Vortex filaments</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkUtvFSEYhonR2GN17UpD4kYX03Idhk0T03hLmrhQuyUMA3ZOmGHKpdH--jI9x1N1RQjP98DLC8BLjE4wEvR0mXU6wRQTTjnG-BHYYCRx0zKJHoMNQkQ0HSPsCDxLaYsQkrxDT8ERYQKxTtANuLwMMdtf0I1eT3bOcLL5KgxQJ6hhDsFDFyI0YVpK1nkMs_bwZkxF-_H2fg-Dg9dFz7lMMJfYF29nY5-DJ077ZF_s12Pw4-OH7-efm4uvn76cv79oDGc0N4b0XEpJSCt7xxAatEG8Fb2oIQw3Rjo6DNIQhhh1LWUGa0mNkwIZZJnR9Bic7bxL6Sc7mJogaq-WOE46_lZBj-rfk3m8Uj_DjaLV0bW4Ct7uBTFcF5uymsZkrPd6tqEkhTlmjFIheEXf_IduQ4n1Q1aKd5RQ0opKne4oE0NK0brDYzBSa2dq7Uw9dFYnXv-d4cD_KakC7_bAOnnQYay-lWXxdu1NYcXa--tf7dhtyiE-uGqCehWmdytarE4</recordid><startdate>20140325</startdate><enddate>20140325</enddate><creator>Hänninen, Risto</creator><creator>Baggaley, Andrew W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140325</creationdate><title>Vortex filament method as a tool for computational visualization of quantum turbulence</title><author>Hänninen, Risto ; Baggaley, Andrew W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-c2b59992269bf400dac0567b7091c5cc9f3dd9c24043f634c1a93cf970c0e4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Counterflow</topic><topic>Cylinders</topic><topic>Energy spectrum</topic><topic>Helium</topic><topic>Kinetics</topic><topic>Low temperature</topic><topic>Physical Sciences</topic><topic>Quantum physics</topic><topic>Rotation</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Visualization</topic><topic>Vortex filaments</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hänninen, Risto</creatorcontrib><creatorcontrib>Baggaley, Andrew W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hänninen, Risto</au><au>Baggaley, Andrew W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex filament method as a tool for computational visualization of quantum turbulence</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-03-25</date><risdate>2014</risdate><volume>111</volume><issue>Supplement 1</issue><spage>4667</spage><epage>4674</epage><pages>4667-4674</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24704873</pmid><doi>10.1073/pnas.1312535111</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-03, Vol.111 (Supplement 1), p.4667-4674
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1558323267
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Counterflow
Cylinders
Energy spectrum
Helium
Kinetics
Low temperature
Physical Sciences
Quantum physics
Rotation
Turbulence
Turbulent flow
Visualization
Vortex filaments
Vortices
Vorticity
title Vortex filament method as a tool for computational visualization of quantum turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20filament%20method%20as%20a%20tool%20for%20computational%20visualization%20of%20quantum%20turbulence&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=H%C3%A4nninen,%20Risto&rft.date=2014-03-25&rft.volume=111&rft.issue=Supplement%201&rft.spage=4667&rft.epage=4674&rft.pages=4667-4674&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1312535111&rft_dat=%3Cjstor_proqu%3E23771131%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558323267&rft_id=info:pmid/24704873&rft_jstor_id=23771131&rfr_iscdi=true