A quantum network of clocks
The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining...
Gespeichert in:
Veröffentlicht in: | Nature physics 2014-08, Vol.10 (8), p.582-587 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 8 |
container_start_page | 582 |
container_title | Nature physics |
container_volume | 10 |
creator | Kómár, P. Kessler, E. M. Bishof, M. Jiang, L. Sørensen, A. S. Ye, J. Lukin, M. D. |
description | The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack. |
doi_str_mv | 10.1038/nphys3000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1558080448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3416704041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</originalsourceid><addsrcrecordid>eNplz81LAzEQBfAgCtbqwbOXBU8KqzM7ySZ7LKV-QMGLnkOaTdR-bNpkF-l_78pKETzNHH68x2PsEuEOgdR9s_3YJwKAIzZCyUVecIXHh1_SKTtLaQnAixJpxK4m2a4zTdttssa1XyGusuAzuw52lc7ZiTfr5C5-75i9Pcxep0_5_OXxeTqZ55bKos2lx1pg6YrKKmUlVgtfYV1x44mEM7UyC15ZXxrprZUlF8Z6XgN5NEpQTTRm10PuNoZd51Krl6GLTV-pUQgFCjhXvboZlI0hpei83sbPjYl7jaB_tuvD9t7eDjb1pnl38U_iP_wNFQdaBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558080448</pqid></control><display><type>article</type><title>A quantum network of clocks</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kómár, P. ; Kessler, E. M. ; Bishof, M. ; Jiang, L. ; Sørensen, A. S. ; Ye, J. ; Lukin, M. D.</creator><creatorcontrib>Kómár, P. ; Kessler, E. M. ; Bishof, M. ; Jiang, L. ; Sørensen, A. S. ; Ye, J. ; Lukin, M. D.</creatorcontrib><description>The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3000</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/1255 ; 639/766/483/640 ; Atomic ; Atomic clocks ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Global positioning systems ; GPS ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2014-08, Vol.10 (8), p.582-587</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</citedby><cites>FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3000$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3000$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kómár, P.</creatorcontrib><creatorcontrib>Kessler, E. M.</creatorcontrib><creatorcontrib>Bishof, M.</creatorcontrib><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Sørensen, A. S.</creatorcontrib><creatorcontrib>Ye, J.</creatorcontrib><creatorcontrib>Lukin, M. D.</creatorcontrib><title>A quantum network of clocks</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.</description><subject>639/766/400/482</subject><subject>639/766/483/1255</subject><subject>639/766/483/640</subject><subject>Atomic</subject><subject>Atomic clocks</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplz81LAzEQBfAgCtbqwbOXBU8KqzM7ySZ7LKV-QMGLnkOaTdR-bNpkF-l_78pKETzNHH68x2PsEuEOgdR9s_3YJwKAIzZCyUVecIXHh1_SKTtLaQnAixJpxK4m2a4zTdttssa1XyGusuAzuw52lc7ZiTfr5C5-75i9Pcxep0_5_OXxeTqZ55bKos2lx1pg6YrKKmUlVgtfYV1x44mEM7UyC15ZXxrprZUlF8Z6XgN5NEpQTTRm10PuNoZd51Krl6GLTV-pUQgFCjhXvboZlI0hpei83sbPjYl7jaB_tuvD9t7eDjb1pnl38U_iP_wNFQdaBQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kómár, P.</creator><creator>Kessler, E. M.</creator><creator>Bishof, M.</creator><creator>Jiang, L.</creator><creator>Sørensen, A. S.</creator><creator>Ye, J.</creator><creator>Lukin, M. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>A quantum network of clocks</title><author>Kómár, P. ; Kessler, E. M. ; Bishof, M. ; Jiang, L. ; Sørensen, A. S. ; Ye, J. ; Lukin, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/766/400/482</topic><topic>639/766/483/1255</topic><topic>639/766/483/640</topic><topic>Atomic</topic><topic>Atomic clocks</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kómár, P.</creatorcontrib><creatorcontrib>Kessler, E. M.</creatorcontrib><creatorcontrib>Bishof, M.</creatorcontrib><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Sørensen, A. S.</creatorcontrib><creatorcontrib>Ye, J.</creatorcontrib><creatorcontrib>Lukin, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kómár, P.</au><au>Kessler, E. M.</au><au>Bishof, M.</au><au>Jiang, L.</au><au>Sørensen, A. S.</au><au>Ye, J.</au><au>Lukin, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantum network of clocks</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>582</spage><epage>587</epage><pages>582-587</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3000</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2014-08, Vol.10 (8), p.582-587 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_1558080448 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/400/482 639/766/483/1255 639/766/483/640 Atomic Atomic clocks Classical and Continuum Physics Complex Systems Condensed Matter Physics Global positioning systems GPS Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Quantum physics Theoretical |
title | A quantum network of clocks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantum%20network%20of%20clocks&rft.jtitle=Nature%20physics&rft.au=K%C3%B3m%C3%A1r,%20P.&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=582&rft.epage=587&rft.pages=582-587&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3000&rft_dat=%3Cproquest_cross%3E3416704041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558080448&rft_id=info:pmid/&rfr_iscdi=true |