A quantum network of clocks

The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2014-08, Vol.10 (8), p.582-587
Hauptverfasser: Kómár, P., Kessler, E. M., Bishof, M., Jiang, L., Sørensen, A. S., Ye, J., Lukin, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 8
container_start_page 582
container_title Nature physics
container_volume 10
creator Kómár, P.
Kessler, E. M.
Bishof, M.
Jiang, L.
Sørensen, A. S.
Ye, J.
Lukin, M. D.
description The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.
doi_str_mv 10.1038/nphys3000
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1558080448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3416704041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</originalsourceid><addsrcrecordid>eNplz81LAzEQBfAgCtbqwbOXBU8KqzM7ySZ7LKV-QMGLnkOaTdR-bNpkF-l_78pKETzNHH68x2PsEuEOgdR9s_3YJwKAIzZCyUVecIXHh1_SKTtLaQnAixJpxK4m2a4zTdttssa1XyGusuAzuw52lc7ZiTfr5C5-75i9Pcxep0_5_OXxeTqZ55bKos2lx1pg6YrKKmUlVgtfYV1x44mEM7UyC15ZXxrprZUlF8Z6XgN5NEpQTTRm10PuNoZd51Krl6GLTV-pUQgFCjhXvboZlI0hpei83sbPjYl7jaB_tuvD9t7eDjb1pnl38U_iP_wNFQdaBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558080448</pqid></control><display><type>article</type><title>A quantum network of clocks</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kómár, P. ; Kessler, E. M. ; Bishof, M. ; Jiang, L. ; Sørensen, A. S. ; Ye, J. ; Lukin, M. D.</creator><creatorcontrib>Kómár, P. ; Kessler, E. M. ; Bishof, M. ; Jiang, L. ; Sørensen, A. S. ; Ye, J. ; Lukin, M. D.</creatorcontrib><description>The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3000</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/1255 ; 639/766/483/640 ; Atomic ; Atomic clocks ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Global positioning systems ; GPS ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2014-08, Vol.10 (8), p.582-587</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</citedby><cites>FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3000$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3000$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kómár, P.</creatorcontrib><creatorcontrib>Kessler, E. M.</creatorcontrib><creatorcontrib>Bishof, M.</creatorcontrib><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Sørensen, A. S.</creatorcontrib><creatorcontrib>Ye, J.</creatorcontrib><creatorcontrib>Lukin, M. D.</creatorcontrib><title>A quantum network of clocks</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.</description><subject>639/766/400/482</subject><subject>639/766/483/1255</subject><subject>639/766/483/640</subject><subject>Atomic</subject><subject>Atomic clocks</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplz81LAzEQBfAgCtbqwbOXBU8KqzM7ySZ7LKV-QMGLnkOaTdR-bNpkF-l_78pKETzNHH68x2PsEuEOgdR9s_3YJwKAIzZCyUVecIXHh1_SKTtLaQnAixJpxK4m2a4zTdttssa1XyGusuAzuw52lc7ZiTfr5C5-75i9Pcxep0_5_OXxeTqZ55bKos2lx1pg6YrKKmUlVgtfYV1x44mEM7UyC15ZXxrprZUlF8Z6XgN5NEpQTTRm10PuNoZd51Krl6GLTV-pUQgFCjhXvboZlI0hpei83sbPjYl7jaB_tuvD9t7eDjb1pnl38U_iP_wNFQdaBQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kómár, P.</creator><creator>Kessler, E. M.</creator><creator>Bishof, M.</creator><creator>Jiang, L.</creator><creator>Sørensen, A. S.</creator><creator>Ye, J.</creator><creator>Lukin, M. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>A quantum network of clocks</title><author>Kómár, P. ; Kessler, E. M. ; Bishof, M. ; Jiang, L. ; Sørensen, A. S. ; Ye, J. ; Lukin, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7f1d516e29c88c719bf91d94af335ead8ab49cf6a7fcc7645acf4d03f1a853d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/766/400/482</topic><topic>639/766/483/1255</topic><topic>639/766/483/640</topic><topic>Atomic</topic><topic>Atomic clocks</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kómár, P.</creatorcontrib><creatorcontrib>Kessler, E. M.</creatorcontrib><creatorcontrib>Bishof, M.</creatorcontrib><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Sørensen, A. S.</creatorcontrib><creatorcontrib>Ye, J.</creatorcontrib><creatorcontrib>Lukin, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kómár, P.</au><au>Kessler, E. M.</au><au>Bishof, M.</au><au>Jiang, L.</au><au>Sørensen, A. S.</au><au>Ye, J.</au><au>Lukin, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantum network of clocks</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>582</spage><epage>587</epage><pages>582-587</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3000</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2014-08, Vol.10 (8), p.582-587
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_1558080448
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/766/400/482
639/766/483/1255
639/766/483/640
Atomic
Atomic clocks
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Global positioning systems
GPS
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Quantum physics
Theoretical
title A quantum network of clocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantum%20network%20of%20clocks&rft.jtitle=Nature%20physics&rft.au=K%C3%B3m%C3%A1r,%20P.&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=582&rft.epage=587&rft.pages=582-587&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3000&rft_dat=%3Cproquest_cross%3E3416704041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558080448&rft_id=info:pmid/&rfr_iscdi=true