Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments

One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2014-08, Vol.62 (8), p.3004-3014
Hauptverfasser: Agrawal, Piyush, Ahlen, Anders, Olofsson, Tomas, Gidlund, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3014
container_issue 8
container_start_page 3004
container_title IEEE transactions on communications
container_volume 62
creator Agrawal, Piyush
Ahlen, Anders
Olofsson, Tomas
Gidlund, Mikael
description One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.
doi_str_mv 10.1109/TCOMM.2014.2332876
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1555362713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6842666</ieee_id><sourcerecordid>3410692301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1EJZaWPwCXSFw4kGX8Eds5VssClbbqZdur5biTxVViL3YCKr8eh6164MJpDvO8ntd6CHlLYU0ptJ_2m5vr6zUDKtaMc6aVfEFWtGl0DbpRL8kKoIVaKqVfkdc5PwCAAM5XxOxiOFR7TGO1-W5DwGGZyboJk_9tJx9D1cdUbQOmw2O17XvvPIap2icb8uhzXggfqqtwP-cpeTsU9qdPMYwFyxfkrLdDxjdP85zcftnuN9_q3c3Xq83lrnalx1Rj5yzr2q4BahHhHlurmLSdZBJaR4VGgZ0STGHbUY7otHOi5y0wq4DKhp-Tj6d38y88zp05Jj_a9Gii9eazv7s0MR3MPBvGBQNR8Pr_-OjnYFg5qgv_4cQfU_wxY57KMjscBhswztlQKVvd8EYtTd7_gz7EOYXyeVOENFwyRXmh2IlyKeacsH-uQMEsSs1fpWZRap6UltC7U8gj4nNAasGklPwP_BSeiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555362713</pqid></control><display><type>article</type><title>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Agrawal, Piyush ; Ahlen, Anders ; Olofsson, Tomas ; Gidlund, Mikael</creator><creatorcontrib>Agrawal, Piyush ; Ahlen, Anders ; Olofsson, Tomas ; Gidlund, Mikael</creatorcontrib><description>One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.</description><identifier>ISSN: 0090-6778</identifier><identifier>ISSN: 1558-0857</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2014.2332876</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ad hoc ; Bit error rate ; Channels ; Energy management ; Energy transmission ; Fading ; fixed link margin design ; industrial process controls ; Industries ; Mathematical models ; mesh networks ; Nakagami distribution ; Networks ; Radio ; Remote sensors ; Rician channels ; Rolling mills ; Shadow mapping ; Telecommunications industry ; temporal channel modeling ; Vectors ; Wireless sensor</subject><ispartof>IEEE transactions on communications, 2014-08, Vol.62 (8), p.3004-3014</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</citedby><cites>FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6842666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6842666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24278$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234204$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Agrawal, Piyush</creatorcontrib><creatorcontrib>Ahlen, Anders</creatorcontrib><creatorcontrib>Olofsson, Tomas</creatorcontrib><creatorcontrib>Gidlund, Mikael</creatorcontrib><title>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.</description><subject>ad hoc</subject><subject>Bit error rate</subject><subject>Channels</subject><subject>Energy management</subject><subject>Energy transmission</subject><subject>Fading</subject><subject>fixed link margin design</subject><subject>industrial process controls</subject><subject>Industries</subject><subject>Mathematical models</subject><subject>mesh networks</subject><subject>Nakagami distribution</subject><subject>Networks</subject><subject>Radio</subject><subject>Remote sensors</subject><subject>Rician channels</subject><subject>Rolling mills</subject><subject>Shadow mapping</subject><subject>Telecommunications industry</subject><subject>temporal channel modeling</subject><subject>Vectors</subject><subject>Wireless sensor</subject><issn>0090-6778</issn><issn>1558-0857</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1v1DAQhi1EJZaWPwCXSFw4kGX8Eds5VssClbbqZdur5biTxVViL3YCKr8eh6164MJpDvO8ntd6CHlLYU0ptJ_2m5vr6zUDKtaMc6aVfEFWtGl0DbpRL8kKoIVaKqVfkdc5PwCAAM5XxOxiOFR7TGO1-W5DwGGZyboJk_9tJx9D1cdUbQOmw2O17XvvPIap2icb8uhzXggfqqtwP-cpeTsU9qdPMYwFyxfkrLdDxjdP85zcftnuN9_q3c3Xq83lrnalx1Rj5yzr2q4BahHhHlurmLSdZBJaR4VGgZ0STGHbUY7otHOi5y0wq4DKhp-Tj6d38y88zp05Jj_a9Gii9eazv7s0MR3MPBvGBQNR8Pr_-OjnYFg5qgv_4cQfU_wxY57KMjscBhswztlQKVvd8EYtTd7_gz7EOYXyeVOENFwyRXmh2IlyKeacsH-uQMEsSs1fpWZRap6UltC7U8gj4nNAasGklPwP_BSeiA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Agrawal, Piyush</creator><creator>Ahlen, Anders</creator><creator>Olofsson, Tomas</creator><creator>Gidlund, Mikael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG5</scope><scope>DF2</scope></search><sort><creationdate>20140801</creationdate><title>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</title><author>Agrawal, Piyush ; Ahlen, Anders ; Olofsson, Tomas ; Gidlund, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ad hoc</topic><topic>Bit error rate</topic><topic>Channels</topic><topic>Energy management</topic><topic>Energy transmission</topic><topic>Fading</topic><topic>fixed link margin design</topic><topic>industrial process controls</topic><topic>Industries</topic><topic>Mathematical models</topic><topic>mesh networks</topic><topic>Nakagami distribution</topic><topic>Networks</topic><topic>Radio</topic><topic>Remote sensors</topic><topic>Rician channels</topic><topic>Rolling mills</topic><topic>Shadow mapping</topic><topic>Telecommunications industry</topic><topic>temporal channel modeling</topic><topic>Vectors</topic><topic>Wireless sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Piyush</creatorcontrib><creatorcontrib>Ahlen, Anders</creatorcontrib><creatorcontrib>Olofsson, Tomas</creatorcontrib><creatorcontrib>Gidlund, Mikael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Mittuniversitetet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agrawal, Piyush</au><au>Ahlen, Anders</au><au>Olofsson, Tomas</au><au>Gidlund, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>62</volume><issue>8</issue><spage>3004</spage><epage>3014</epage><pages>3004-3014</pages><issn>0090-6778</issn><issn>1558-0857</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2014.2332876</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2014-08, Vol.62 (8), p.3004-3014
issn 0090-6778
1558-0857
1558-0857
language eng
recordid cdi_proquest_journals_1555362713
source IEEE Electronic Library (IEL)
subjects ad hoc
Bit error rate
Channels
Energy management
Energy transmission
Fading
fixed link margin design
industrial process controls
Industries
Mathematical models
mesh networks
Nakagami distribution
Networks
Radio
Remote sensors
Rician channels
Rolling mills
Shadow mapping
Telecommunications industry
temporal channel modeling
Vectors
Wireless sensor
title Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Term%20Channel%20Characterization%20for%20Energy%20Efficient%20Transmission%20in%20Industrial%20Environments&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Agrawal,%20Piyush&rft.date=2014-08-01&rft.volume=62&rft.issue=8&rft.spage=3004&rft.epage=3014&rft.pages=3004-3014&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2014.2332876&rft_dat=%3Cproquest_RIE%3E3410692301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555362713&rft_id=info:pmid/&rft_ieee_id=6842666&rfr_iscdi=true