Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments
One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2014-08, Vol.62 (8), p.3004-3014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3014 |
---|---|
container_issue | 8 |
container_start_page | 3004 |
container_title | IEEE transactions on communications |
container_volume | 62 |
creator | Agrawal, Piyush Ahlen, Anders Olofsson, Tomas Gidlund, Mikael |
description | One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher. |
doi_str_mv | 10.1109/TCOMM.2014.2332876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1555362713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6842666</ieee_id><sourcerecordid>3410692301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1EJZaWPwCXSFw4kGX8Eds5VssClbbqZdur5biTxVViL3YCKr8eh6164MJpDvO8ntd6CHlLYU0ptJ_2m5vr6zUDKtaMc6aVfEFWtGl0DbpRL8kKoIVaKqVfkdc5PwCAAM5XxOxiOFR7TGO1-W5DwGGZyboJk_9tJx9D1cdUbQOmw2O17XvvPIap2icb8uhzXggfqqtwP-cpeTsU9qdPMYwFyxfkrLdDxjdP85zcftnuN9_q3c3Xq83lrnalx1Rj5yzr2q4BahHhHlurmLSdZBJaR4VGgZ0STGHbUY7otHOi5y0wq4DKhp-Tj6d38y88zp05Jj_a9Gii9eazv7s0MR3MPBvGBQNR8Pr_-OjnYFg5qgv_4cQfU_wxY57KMjscBhswztlQKVvd8EYtTd7_gz7EOYXyeVOENFwyRXmh2IlyKeacsH-uQMEsSs1fpWZRap6UltC7U8gj4nNAasGklPwP_BSeiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555362713</pqid></control><display><type>article</type><title>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Agrawal, Piyush ; Ahlen, Anders ; Olofsson, Tomas ; Gidlund, Mikael</creator><creatorcontrib>Agrawal, Piyush ; Ahlen, Anders ; Olofsson, Tomas ; Gidlund, Mikael</creatorcontrib><description>One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.</description><identifier>ISSN: 0090-6778</identifier><identifier>ISSN: 1558-0857</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2014.2332876</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ad hoc ; Bit error rate ; Channels ; Energy management ; Energy transmission ; Fading ; fixed link margin design ; industrial process controls ; Industries ; Mathematical models ; mesh networks ; Nakagami distribution ; Networks ; Radio ; Remote sensors ; Rician channels ; Rolling mills ; Shadow mapping ; Telecommunications industry ; temporal channel modeling ; Vectors ; Wireless sensor</subject><ispartof>IEEE transactions on communications, 2014-08, Vol.62 (8), p.3004-3014</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</citedby><cites>FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6842666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6842666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24278$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234204$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Agrawal, Piyush</creatorcontrib><creatorcontrib>Ahlen, Anders</creatorcontrib><creatorcontrib>Olofsson, Tomas</creatorcontrib><creatorcontrib>Gidlund, Mikael</creatorcontrib><title>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.</description><subject>ad hoc</subject><subject>Bit error rate</subject><subject>Channels</subject><subject>Energy management</subject><subject>Energy transmission</subject><subject>Fading</subject><subject>fixed link margin design</subject><subject>industrial process controls</subject><subject>Industries</subject><subject>Mathematical models</subject><subject>mesh networks</subject><subject>Nakagami distribution</subject><subject>Networks</subject><subject>Radio</subject><subject>Remote sensors</subject><subject>Rician channels</subject><subject>Rolling mills</subject><subject>Shadow mapping</subject><subject>Telecommunications industry</subject><subject>temporal channel modeling</subject><subject>Vectors</subject><subject>Wireless sensor</subject><issn>0090-6778</issn><issn>1558-0857</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1v1DAQhi1EJZaWPwCXSFw4kGX8Eds5VssClbbqZdur5biTxVViL3YCKr8eh6164MJpDvO8ntd6CHlLYU0ptJ_2m5vr6zUDKtaMc6aVfEFWtGl0DbpRL8kKoIVaKqVfkdc5PwCAAM5XxOxiOFR7TGO1-W5DwGGZyboJk_9tJx9D1cdUbQOmw2O17XvvPIap2icb8uhzXggfqqtwP-cpeTsU9qdPMYwFyxfkrLdDxjdP85zcftnuN9_q3c3Xq83lrnalx1Rj5yzr2q4BahHhHlurmLSdZBJaR4VGgZ0STGHbUY7otHOi5y0wq4DKhp-Tj6d38y88zp05Jj_a9Gii9eazv7s0MR3MPBvGBQNR8Pr_-OjnYFg5qgv_4cQfU_wxY57KMjscBhswztlQKVvd8EYtTd7_gz7EOYXyeVOENFwyRXmh2IlyKeacsH-uQMEsSs1fpWZRap6UltC7U8gj4nNAasGklPwP_BSeiA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Agrawal, Piyush</creator><creator>Ahlen, Anders</creator><creator>Olofsson, Tomas</creator><creator>Gidlund, Mikael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG5</scope><scope>DF2</scope></search><sort><creationdate>20140801</creationdate><title>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</title><author>Agrawal, Piyush ; Ahlen, Anders ; Olofsson, Tomas ; Gidlund, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ebca2b9b501aee0de9a726ab62609c148e4eb7427e9b13eec8cc4f3902a701653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ad hoc</topic><topic>Bit error rate</topic><topic>Channels</topic><topic>Energy management</topic><topic>Energy transmission</topic><topic>Fading</topic><topic>fixed link margin design</topic><topic>industrial process controls</topic><topic>Industries</topic><topic>Mathematical models</topic><topic>mesh networks</topic><topic>Nakagami distribution</topic><topic>Networks</topic><topic>Radio</topic><topic>Remote sensors</topic><topic>Rician channels</topic><topic>Rolling mills</topic><topic>Shadow mapping</topic><topic>Telecommunications industry</topic><topic>temporal channel modeling</topic><topic>Vectors</topic><topic>Wireless sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Piyush</creatorcontrib><creatorcontrib>Ahlen, Anders</creatorcontrib><creatorcontrib>Olofsson, Tomas</creatorcontrib><creatorcontrib>Gidlund, Mikael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Mittuniversitetet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agrawal, Piyush</au><au>Ahlen, Anders</au><au>Olofsson, Tomas</au><au>Gidlund, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>62</volume><issue>8</issue><spage>3004</spage><epage>3014</epage><pages>3004-3014</pages><issn>0090-6778</issn><issn>1558-0857</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e.g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2014.2332876</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2014-08, Vol.62 (8), p.3004-3014 |
issn | 0090-6778 1558-0857 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_1555362713 |
source | IEEE Electronic Library (IEL) |
subjects | ad hoc Bit error rate Channels Energy management Energy transmission Fading fixed link margin design industrial process controls Industries Mathematical models mesh networks Nakagami distribution Networks Radio Remote sensors Rician channels Rolling mills Shadow mapping Telecommunications industry temporal channel modeling Vectors Wireless sensor |
title | Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Term%20Channel%20Characterization%20for%20Energy%20Efficient%20Transmission%20in%20Industrial%20Environments&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Agrawal,%20Piyush&rft.date=2014-08-01&rft.volume=62&rft.issue=8&rft.spage=3004&rft.epage=3014&rft.pages=3004-3014&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2014.2332876&rft_dat=%3Cproquest_RIE%3E3410692301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555362713&rft_id=info:pmid/&rft_ieee_id=6842666&rfr_iscdi=true |