Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models

This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2014-09, Vol.33 (9), p.1328-1341
Hauptverfasser: Mahmood, Zohaib, Grivet-Talocia, Stefano, Chinea, Alessandro, Calafiore, Giuseppe C., Daniel, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1341
container_issue 9
container_start_page 1328
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 33
creator Mahmood, Zohaib
Grivet-Talocia, Stefano
Chinea, Alessandro
Calafiore, Giuseppe C.
Daniel, Luca
description This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.
doi_str_mv 10.1109/TCAD.2014.2329418
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1555362526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6879632</ieee_id><sourcerecordid>3410692711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsePGyNd-7OZZaP2CLgvUc0uwEU7abmmyF-uvdpcWDp2HgeV9mHoSuCZ4QgtX9cjZ9mFBM-IQyqjgpT9CIKFbknAhyikaYFmWOcYHP0UVKa9yTgqoRep87562HtsuqYE3jf0znQ5stoPsMdcpciNmbScl_-26fzdt-t7AZ8OCyyrdgYvawb83G9-FsEWpo0iU6c6ZJcHWcY_TxOF_OnvPq9ellNq1yy6TqcoprbgUltXVcSY5XztVQUyiMxJIwa4CtFFNFSbBUhjtX8MJYRpSrMQBzbIzuDr3bGL52kDq98clC05gWwi5pImn_sSh52aO3_9B12MW2v04TIQSTVFDZU-RA2RhSiuD0NvqNiXtNsB4060GzHjTro-Y-c3PIeAD442VZKMko-wWVU3jP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555362526</pqid></control><display><type>article</type><title>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Mahmood, Zohaib ; Grivet-Talocia, Stefano ; Chinea, Alessandro ; Calafiore, Giuseppe C. ; Daniel, Luca</creator><creatorcontrib>Mahmood, Zohaib ; Grivet-Talocia, Stefano ; Chinea, Alessandro ; Calafiore, Giuseppe C. ; Daniel, Luca</creatorcontrib><description>This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2014.2329418</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computational modeling ; Convergence ; Dynamical systems ; Dynamics ; Ellipsoids ; Integrated circuit modeling ; Mathematical models ; Memory management ; Numerical models ; Optimization ; Parametrization ; Passivity ; Perturbation methods</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2014-09, Vol.33 (9), p.1328-1341</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</citedby><cites>FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6879632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6879632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mahmood, Zohaib</creatorcontrib><creatorcontrib>Grivet-Talocia, Stefano</creatorcontrib><creatorcontrib>Chinea, Alessandro</creatorcontrib><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><title>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Ellipsoids</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Memory management</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Parametrization</subject><subject>Passivity</subject><subject>Perturbation methods</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwsePGyNd-7OZZaP2CLgvUc0uwEU7abmmyF-uvdpcWDp2HgeV9mHoSuCZ4QgtX9cjZ9mFBM-IQyqjgpT9CIKFbknAhyikaYFmWOcYHP0UVKa9yTgqoRep87562HtsuqYE3jf0znQ5stoPsMdcpciNmbScl_-26fzdt-t7AZ8OCyyrdgYvawb83G9-FsEWpo0iU6c6ZJcHWcY_TxOF_OnvPq9ellNq1yy6TqcoprbgUltXVcSY5XztVQUyiMxJIwa4CtFFNFSbBUhjtX8MJYRpSrMQBzbIzuDr3bGL52kDq98clC05gWwi5pImn_sSh52aO3_9B12MW2v04TIQSTVFDZU-RA2RhSiuD0NvqNiXtNsB4060GzHjTro-Y-c3PIeAD442VZKMko-wWVU3jP</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Mahmood, Zohaib</creator><creator>Grivet-Talocia, Stefano</creator><creator>Chinea, Alessandro</creator><creator>Calafiore, Giuseppe C.</creator><creator>Daniel, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140901</creationdate><title>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</title><author>Mahmood, Zohaib ; Grivet-Talocia, Stefano ; Chinea, Alessandro ; Calafiore, Giuseppe C. ; Daniel, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Ellipsoids</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Memory management</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Parametrization</topic><topic>Passivity</topic><topic>Perturbation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmood, Zohaib</creatorcontrib><creatorcontrib>Grivet-Talocia, Stefano</creatorcontrib><creatorcontrib>Chinea, Alessandro</creatorcontrib><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahmood, Zohaib</au><au>Grivet-Talocia, Stefano</au><au>Chinea, Alessandro</au><au>Calafiore, Giuseppe C.</au><au>Daniel, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>33</volume><issue>9</issue><spage>1328</spage><epage>1341</epage><pages>1328-1341</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2014.2329418</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2014-09, Vol.33 (9), p.1328-1341
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_1555362526
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Computational modeling
Convergence
Dynamical systems
Dynamics
Ellipsoids
Integrated circuit modeling
Mathematical models
Memory management
Numerical models
Optimization
Parametrization
Passivity
Perturbation methods
title Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Localization%20Methods%20for%20Passivity%20Enforcement%20of%20Linear%20Dynamical%20Models&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Mahmood,%20Zohaib&rft.date=2014-09-01&rft.volume=33&rft.issue=9&rft.spage=1328&rft.epage=1341&rft.pages=1328-1341&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2014.2329418&rft_dat=%3Cproquest_RIE%3E3410692711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555362526&rft_id=info:pmid/&rft_ieee_id=6879632&rfr_iscdi=true