Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models
This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2014-09, Vol.33 (9), p.1328-1341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1341 |
---|---|
container_issue | 9 |
container_start_page | 1328 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 33 |
creator | Mahmood, Zohaib Grivet-Talocia, Stefano Chinea, Alessandro Calafiore, Giuseppe C. Daniel, Luca |
description | This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence. |
doi_str_mv | 10.1109/TCAD.2014.2329418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1555362526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6879632</ieee_id><sourcerecordid>3410692711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsePGyNd-7OZZaP2CLgvUc0uwEU7abmmyF-uvdpcWDp2HgeV9mHoSuCZ4QgtX9cjZ9mFBM-IQyqjgpT9CIKFbknAhyikaYFmWOcYHP0UVKa9yTgqoRep87562HtsuqYE3jf0znQ5stoPsMdcpciNmbScl_-26fzdt-t7AZ8OCyyrdgYvawb83G9-FsEWpo0iU6c6ZJcHWcY_TxOF_OnvPq9ellNq1yy6TqcoprbgUltXVcSY5XztVQUyiMxJIwa4CtFFNFSbBUhjtX8MJYRpSrMQBzbIzuDr3bGL52kDq98clC05gWwi5pImn_sSh52aO3_9B12MW2v04TIQSTVFDZU-RA2RhSiuD0NvqNiXtNsB4060GzHjTro-Y-c3PIeAD442VZKMko-wWVU3jP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555362526</pqid></control><display><type>article</type><title>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Mahmood, Zohaib ; Grivet-Talocia, Stefano ; Chinea, Alessandro ; Calafiore, Giuseppe C. ; Daniel, Luca</creator><creatorcontrib>Mahmood, Zohaib ; Grivet-Talocia, Stefano ; Chinea, Alessandro ; Calafiore, Giuseppe C. ; Daniel, Luca</creatorcontrib><description>This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2014.2329418</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computational modeling ; Convergence ; Dynamical systems ; Dynamics ; Ellipsoids ; Integrated circuit modeling ; Mathematical models ; Memory management ; Numerical models ; Optimization ; Parametrization ; Passivity ; Perturbation methods</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2014-09, Vol.33 (9), p.1328-1341</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</citedby><cites>FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6879632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6879632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mahmood, Zohaib</creatorcontrib><creatorcontrib>Grivet-Talocia, Stefano</creatorcontrib><creatorcontrib>Chinea, Alessandro</creatorcontrib><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><title>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Ellipsoids</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Memory management</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Parametrization</subject><subject>Passivity</subject><subject>Perturbation methods</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwsePGyNd-7OZZaP2CLgvUc0uwEU7abmmyF-uvdpcWDp2HgeV9mHoSuCZ4QgtX9cjZ9mFBM-IQyqjgpT9CIKFbknAhyikaYFmWOcYHP0UVKa9yTgqoRep87562HtsuqYE3jf0znQ5stoPsMdcpciNmbScl_-26fzdt-t7AZ8OCyyrdgYvawb83G9-FsEWpo0iU6c6ZJcHWcY_TxOF_OnvPq9ellNq1yy6TqcoprbgUltXVcSY5XztVQUyiMxJIwa4CtFFNFSbBUhjtX8MJYRpSrMQBzbIzuDr3bGL52kDq98clC05gWwi5pImn_sSh52aO3_9B12MW2v04TIQSTVFDZU-RA2RhSiuD0NvqNiXtNsB4060GzHjTro-Y-c3PIeAD442VZKMko-wWVU3jP</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Mahmood, Zohaib</creator><creator>Grivet-Talocia, Stefano</creator><creator>Chinea, Alessandro</creator><creator>Calafiore, Giuseppe C.</creator><creator>Daniel, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140901</creationdate><title>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</title><author>Mahmood, Zohaib ; Grivet-Talocia, Stefano ; Chinea, Alessandro ; Calafiore, Giuseppe C. ; Daniel, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-20d4c521dcf49640bffded2e7a60613cae3b939781069a4ff747ac319fd0ee3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Ellipsoids</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Memory management</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Parametrization</topic><topic>Passivity</topic><topic>Perturbation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmood, Zohaib</creatorcontrib><creatorcontrib>Grivet-Talocia, Stefano</creatorcontrib><creatorcontrib>Chinea, Alessandro</creatorcontrib><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahmood, Zohaib</au><au>Grivet-Talocia, Stefano</au><au>Chinea, Alessandro</au><au>Calafiore, Giuseppe C.</au><au>Daniel, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>33</volume><issue>9</issue><spage>1328</spage><epage>1341</epage><pages>1328-1341</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>This paper describes a novel approach for passivity enforcement of compact dynamical models of electrical interconnects. The proposed approach is based on a parameterization of general state-space scattering models with fixed poles. We formulate the passivity constraints as a unitary boundedness condition on the H ∞ norm of the system transfer function. When this condition is not verified, we use it as an explicit constraint within an iterative perturbation loop of the system state-space matrices. Since the resulting optimization framework is convex but nonsmooth, we solve it via localization based algorithms, such as the ellipsoid and the cutting plane methods. The proposed technique solves two critical bottleneck issues of the existing approaches for passivity enforcement of linear macromodels. Compared to quasi-optimal schemes based on singular value or Hamiltonian eigenvalue perturbation, we are able to guarantee convergence to the optimal solution. Compared to convex formulations based on direct Bounded Real Lemma constraints, we are able to reduce both memory and time requirements by orders of magnitude. We demonstrate the effectiveness of our approach on a number of cases for which existing algorithms either fail or exhibit very slow convergence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2014.2329418</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2014-09, Vol.33 (9), p.1328-1341 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_1555362526 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Computational modeling Convergence Dynamical systems Dynamics Ellipsoids Integrated circuit modeling Mathematical models Memory management Numerical models Optimization Parametrization Passivity Perturbation methods |
title | Efficient Localization Methods for Passivity Enforcement of Linear Dynamical Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Localization%20Methods%20for%20Passivity%20Enforcement%20of%20Linear%20Dynamical%20Models&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Mahmood,%20Zohaib&rft.date=2014-09-01&rft.volume=33&rft.issue=9&rft.spage=1328&rft.epage=1341&rft.pages=1328-1341&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2014.2329418&rft_dat=%3Cproquest_RIE%3E3410692711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555362526&rft_id=info:pmid/&rft_ieee_id=6879632&rfr_iscdi=true |