Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors
Safety and reactor availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including the fuel pin cladding, must stay tight during the reactor operation. While manufacturing cladding failures evolve very slowly from a gaseous failure to an open...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2014-08, Vol.61 (4), p.2011-2016 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2016 |
---|---|
container_issue | 4 |
container_start_page | 2011 |
container_title | IEEE transactions on nuclear science |
container_volume | 61 |
creator | Jacquet, P. Pailloux, A. Aoust, G. Jeannot, J.-P Doizi, D. |
description | Safety and reactor availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including the fuel pin cladding, must stay tight during the reactor operation. While manufacturing cladding failures evolve very slowly from a gaseous failure to an open failure, end of life and accidental failures may open very rapidly, generating a concerning situation. It is then important to detect the failure at the early stage through the gaseous fission products xenon and krypton, and evaluate the burning rate of the failed assembly. Therefore the ratio of stable over radioactive fission products needs to be measured. In the frame of the French ASTRID project, an optical spectroscopy technique-Cavity Ring-Down Spectroscopy (CRDS) - is developed to measure the gaseous fission product xenon, either stable or radioactive. A dedicated CRDS set-up, coupled with a glow discharge, is built to detect xenon with a commercial laser. A 6 ·10 -10 molar fraction of stable xenon over argon was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise, to approximately 2 ·10 -11 for each even isotope, 6 ·10 -11 for the 131 Xe and 5.5 ·10 -11 for the 129 Xe. This sensitivity matches the specifications required for gaseous failure measurement. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable and radioactive xenon isotopes. |
doi_str_mv | 10.1109/TNS.2014.2304074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1554413905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6803079</ieee_id><sourcerecordid>3407424001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-b3d71991987779fbea49dd1bc039bd1e6e6ecc9e6e4d07ea568a32a121fd2a4c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wUvAi5etM7vZZnOUalXwC63nkGZnJdJuarKr9N-bWvEggQkZnneYPIwdI4wQQZ3PHl5GOaAY5QUIkGKHDbAsqwxLWe2yAQBWmRJK7bODGN_TU5RQDhhNzKfr1vzZtW_Zpf9q-cuKbBd8tH615o0P_NpE8n3kUxej8y1_Cr7ubRf5LBhL_J5M7AMtqU0tl_K-dv2ST03s-DMZ2_kQD9leYxaRjn7vIXudXs0mN9nd4_Xt5OIus2IMXTYvaolKoaqklKqZkxGqrnFuoVDzGmmcjrUqVVGDJFOOK1PkBnNs6twIWwzZ2XbuKviPnmKnly5aWixMu_mCxgpLpUBCmdDTf-i770ObttPJmxBYqB8KtpRNRmKgRq-CW5qw1gh6410n73rjXf96T5GTbcQR0R8-rqAAqYpvJnR_RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554413905</pqid></control><display><type>article</type><title>Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors</title><source>IEEE Electronic Library (IEL)</source><creator>Jacquet, P. ; Pailloux, A. ; Aoust, G. ; Jeannot, J.-P ; Doizi, D.</creator><creatorcontrib>Jacquet, P. ; Pailloux, A. ; Aoust, G. ; Jeannot, J.-P ; Doizi, D.</creatorcontrib><description>Safety and reactor availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including the fuel pin cladding, must stay tight during the reactor operation. While manufacturing cladding failures evolve very slowly from a gaseous failure to an open failure, end of life and accidental failures may open very rapidly, generating a concerning situation. It is then important to detect the failure at the early stage through the gaseous fission products xenon and krypton, and evaluate the burning rate of the failed assembly. Therefore the ratio of stable over radioactive fission products needs to be measured. In the frame of the French ASTRID project, an optical spectroscopy technique-Cavity Ring-Down Spectroscopy (CRDS) - is developed to measure the gaseous fission product xenon, either stable or radioactive. A dedicated CRDS set-up, coupled with a glow discharge, is built to detect xenon with a commercial laser. A 6 ·10 -10 molar fraction of stable xenon over argon was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise, to approximately 2 ·10 -11 for each even isotope, 6 ·10 -11 for the 131 Xe and 5.5 ·10 -11 for the 129 Xe. This sensitivity matches the specifications required for gaseous failure measurement. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable and radioactive xenon isotopes.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2014.2304074</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Argon ; Cavity resonators ; Cavity ring-down spectroscopy ; Failure ; Fission products ; hyperfine structure ; Inductors ; isotope shift ; Isotopes ; laser spectroscopy ; Measurement by laser beam ; Nuclear engineering ; Nuclear power generation ; Nuclear reactor components ; Nuclear reactors ; Ring lasers ; SFR ; Spectroscopy ; Spectrum analysis ; Xenon</subject><ispartof>IEEE transactions on nuclear science, 2014-08, Vol.61 (4), p.2011-2016</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-b3d71991987779fbea49dd1bc039bd1e6e6ecc9e6e4d07ea568a32a121fd2a4c3</citedby><cites>FETCH-LOGICAL-c460t-b3d71991987779fbea49dd1bc039bd1e6e6ecc9e6e4d07ea568a32a121fd2a4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6803079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6803079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jacquet, P.</creatorcontrib><creatorcontrib>Pailloux, A.</creatorcontrib><creatorcontrib>Aoust, G.</creatorcontrib><creatorcontrib>Jeannot, J.-P</creatorcontrib><creatorcontrib>Doizi, D.</creatorcontrib><title>Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Safety and reactor availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including the fuel pin cladding, must stay tight during the reactor operation. While manufacturing cladding failures evolve very slowly from a gaseous failure to an open failure, end of life and accidental failures may open very rapidly, generating a concerning situation. It is then important to detect the failure at the early stage through the gaseous fission products xenon and krypton, and evaluate the burning rate of the failed assembly. Therefore the ratio of stable over radioactive fission products needs to be measured. In the frame of the French ASTRID project, an optical spectroscopy technique-Cavity Ring-Down Spectroscopy (CRDS) - is developed to measure the gaseous fission product xenon, either stable or radioactive. A dedicated CRDS set-up, coupled with a glow discharge, is built to detect xenon with a commercial laser. A 6 ·10 -10 molar fraction of stable xenon over argon was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise, to approximately 2 ·10 -11 for each even isotope, 6 ·10 -11 for the 131 Xe and 5.5 ·10 -11 for the 129 Xe. This sensitivity matches the specifications required for gaseous failure measurement. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable and radioactive xenon isotopes.</description><subject>Argon</subject><subject>Cavity resonators</subject><subject>Cavity ring-down spectroscopy</subject><subject>Failure</subject><subject>Fission products</subject><subject>hyperfine structure</subject><subject>Inductors</subject><subject>isotope shift</subject><subject>Isotopes</subject><subject>laser spectroscopy</subject><subject>Measurement by laser beam</subject><subject>Nuclear engineering</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Ring lasers</subject><subject>SFR</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Xenon</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wUvAi5etM7vZZnOUalXwC63nkGZnJdJuarKr9N-bWvEggQkZnneYPIwdI4wQQZ3PHl5GOaAY5QUIkGKHDbAsqwxLWe2yAQBWmRJK7bODGN_TU5RQDhhNzKfr1vzZtW_Zpf9q-cuKbBd8tH615o0P_NpE8n3kUxej8y1_Cr7ubRf5LBhL_J5M7AMtqU0tl_K-dv2ST03s-DMZ2_kQD9leYxaRjn7vIXudXs0mN9nd4_Xt5OIus2IMXTYvaolKoaqklKqZkxGqrnFuoVDzGmmcjrUqVVGDJFOOK1PkBnNs6twIWwzZ2XbuKviPnmKnly5aWixMu_mCxgpLpUBCmdDTf-i770ObttPJmxBYqB8KtpRNRmKgRq-CW5qw1gh6410n73rjXf96T5GTbcQR0R8-rqAAqYpvJnR_RQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Jacquet, P.</creator><creator>Pailloux, A.</creator><creator>Aoust, G.</creator><creator>Jeannot, J.-P</creator><creator>Doizi, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140801</creationdate><title>Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors</title><author>Jacquet, P. ; Pailloux, A. ; Aoust, G. ; Jeannot, J.-P ; Doizi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-b3d71991987779fbea49dd1bc039bd1e6e6ecc9e6e4d07ea568a32a121fd2a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Argon</topic><topic>Cavity resonators</topic><topic>Cavity ring-down spectroscopy</topic><topic>Failure</topic><topic>Fission products</topic><topic>hyperfine structure</topic><topic>Inductors</topic><topic>isotope shift</topic><topic>Isotopes</topic><topic>laser spectroscopy</topic><topic>Measurement by laser beam</topic><topic>Nuclear engineering</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Ring lasers</topic><topic>SFR</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquet, P.</creatorcontrib><creatorcontrib>Pailloux, A.</creatorcontrib><creatorcontrib>Aoust, G.</creatorcontrib><creatorcontrib>Jeannot, J.-P</creatorcontrib><creatorcontrib>Doizi, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jacquet, P.</au><au>Pailloux, A.</au><au>Aoust, G.</au><au>Jeannot, J.-P</au><au>Doizi, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>61</volume><issue>4</issue><spage>2011</spage><epage>2016</epage><pages>2011-2016</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Safety and reactor availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including the fuel pin cladding, must stay tight during the reactor operation. While manufacturing cladding failures evolve very slowly from a gaseous failure to an open failure, end of life and accidental failures may open very rapidly, generating a concerning situation. It is then important to detect the failure at the early stage through the gaseous fission products xenon and krypton, and evaluate the burning rate of the failed assembly. Therefore the ratio of stable over radioactive fission products needs to be measured. In the frame of the French ASTRID project, an optical spectroscopy technique-Cavity Ring-Down Spectroscopy (CRDS) - is developed to measure the gaseous fission product xenon, either stable or radioactive. A dedicated CRDS set-up, coupled with a glow discharge, is built to detect xenon with a commercial laser. A 6 ·10 -10 molar fraction of stable xenon over argon was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise, to approximately 2 ·10 -11 for each even isotope, 6 ·10 -11 for the 131 Xe and 5.5 ·10 -11 for the 129 Xe. This sensitivity matches the specifications required for gaseous failure measurement. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable and radioactive xenon isotopes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2014.2304074</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2014-08, Vol.61 (4), p.2011-2016 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_1554413905 |
source | IEEE Electronic Library (IEL) |
subjects | Argon Cavity resonators Cavity ring-down spectroscopy Failure Fission products hyperfine structure Inductors isotope shift Isotopes laser spectroscopy Measurement by laser beam Nuclear engineering Nuclear power generation Nuclear reactor components Nuclear reactors Ring lasers SFR Spectroscopy Spectrum analysis Xenon |
title | Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20Ring-Down%20Spectroscopy%20for%20Gaseous%20Fission%20Products%20Trace%20Measurements%20in%20Sodium%20Fast%20Reactors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Jacquet,%20P.&rft.date=2014-08-01&rft.volume=61&rft.issue=4&rft.spage=2011&rft.epage=2016&rft.pages=2011-2016&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2014.2304074&rft_dat=%3Cproquest_RIE%3E3407424001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554413905&rft_id=info:pmid/&rft_ieee_id=6803079&rfr_iscdi=true |