Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process

Technology scaling increases the role of charge sharing and bipolar effect with respect to multiple cell upset. We analyze the contributions of cell distance and well-contact density to suppress MCU by device-level simulations and neutron experiments. Device simulation results reveal that the ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2014-08, Vol.61 (4), p.1583-1589
Hauptverfasser: Kuiyuan Zhang, Furuta, Jun, Kobayashi, Kazutoshi, Onodera, Hidetoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 4
container_start_page 1583
container_title IEEE transactions on nuclear science
container_volume 61
creator Kuiyuan Zhang
Furuta, Jun
Kobayashi, Kazutoshi
Onodera, Hidetoshi
description Technology scaling increases the role of charge sharing and bipolar effect with respect to multiple cell upset. We analyze the contributions of cell distance and well-contact density to suppress MCU by device-level simulations and neutron experiments. Device simulation results reveal that the ratio of MCU to SEU exponentially decreases by increasing the distance between redundant latches. MCU is suppressed when well contacts are placed between redundant latches. Experimental results also show that the ratio of MCU to SEU exponentially decreases by increasing the distance between cells. MCU is suppressed effectively by increasing the density of well contacts.
doi_str_mv 10.1109/TNS.2014.2314292
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1554413655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6832610</ieee_id><sourcerecordid>3407424231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-84f2365b9ad88459ed74ec41cbcd090218e940c4e8618b560769dbb751dd3cb43</originalsourceid><addsrcrecordid>eNpdkU1P4zAQhi20SHSBOxIXS1z2kmIntmMf2bR8SHyJD3G0HGcqmU3tbuwg-gv427hbtAdOo3n1vKOZeRE6omRKKVGnT7eP05JQNi0rykpV7qAJ5VwWlNfyB5oQQmWhmFJ76GeMr7llnPAJ-pjBCnwH3gIOC9xA3-OZi8lsBOM7_JKVogk-GZvwDHx0aY2DxzfNM34wCSJu11l_c5l_dMuxN8kFH_95b2FMQ2bn7ysY3BJ8ith5bLDghV_i32P_B98PwUKMB2h3YfoIh191Hz2fz5-ay-L67uKqObsuLBMkFZItykrwVplOSsYVdDUDy6htbUcUKakExYhlIAWVLRekFqpr25rTrqtsy6p99Gs7dzWEvyPEpJcu2nyj8RDGqGktRZ7CWZnRk2_oaxgHn7fT-bOM0bwIzxTZUnYIMQ6w0Kt8qhnWmhK9SUbnZPQmGf2VTLYcby0OAP7jQlaloKT6BCYSiLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554413655</pqid></control><display><type>article</type><title>Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process</title><source>IEEE Electronic Library (IEL)</source><creator>Kuiyuan Zhang ; Furuta, Jun ; Kobayashi, Kazutoshi ; Onodera, Hidetoshi</creator><creatorcontrib>Kuiyuan Zhang ; Furuta, Jun ; Kobayashi, Kazutoshi ; Onodera, Hidetoshi</creatorcontrib><description>Technology scaling increases the role of charge sharing and bipolar effect with respect to multiple cell upset. We analyze the contributions of cell distance and well-contact density to suppress MCU by device-level simulations and neutron experiments. Device simulation results reveal that the ratio of MCU to SEU exponentially decreases by increasing the distance between redundant latches. MCU is suppressed when well contacts are placed between redundant latches. Experimental results also show that the ratio of MCU to SEU exponentially decreases by increasing the distance between cells. MCU is suppressed effectively by increasing the density of well contacts.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2014.2314292</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bulk density ; Charge ; Density ; Device-stimulation ; Devices ; Electric potential ; Integrated circuit modeling ; Inverters ; Latches ; Layout ; MCU ; neutron irradiation ; Neutrons ; parasitic bipolar effect ; Redundant ; Shift registers ; Simulation ; soft error ; Transaction processing</subject><ispartof>IEEE transactions on nuclear science, 2014-08, Vol.61 (4), p.1583-1589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-84f2365b9ad88459ed74ec41cbcd090218e940c4e8618b560769dbb751dd3cb43</citedby><cites>FETCH-LOGICAL-c460t-84f2365b9ad88459ed74ec41cbcd090218e940c4e8618b560769dbb751dd3cb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6832610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6832610$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuiyuan Zhang</creatorcontrib><creatorcontrib>Furuta, Jun</creatorcontrib><creatorcontrib>Kobayashi, Kazutoshi</creatorcontrib><creatorcontrib>Onodera, Hidetoshi</creatorcontrib><title>Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Technology scaling increases the role of charge sharing and bipolar effect with respect to multiple cell upset. We analyze the contributions of cell distance and well-contact density to suppress MCU by device-level simulations and neutron experiments. Device simulation results reveal that the ratio of MCU to SEU exponentially decreases by increasing the distance between redundant latches. MCU is suppressed when well contacts are placed between redundant latches. Experimental results also show that the ratio of MCU to SEU exponentially decreases by increasing the distance between cells. MCU is suppressed effectively by increasing the density of well contacts.</description><subject>Bulk density</subject><subject>Charge</subject><subject>Density</subject><subject>Device-stimulation</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Integrated circuit modeling</subject><subject>Inverters</subject><subject>Latches</subject><subject>Layout</subject><subject>MCU</subject><subject>neutron irradiation</subject><subject>Neutrons</subject><subject>parasitic bipolar effect</subject><subject>Redundant</subject><subject>Shift registers</subject><subject>Simulation</subject><subject>soft error</subject><subject>Transaction processing</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1P4zAQhi20SHSBOxIXS1z2kmIntmMf2bR8SHyJD3G0HGcqmU3tbuwg-gv427hbtAdOo3n1vKOZeRE6omRKKVGnT7eP05JQNi0rykpV7qAJ5VwWlNfyB5oQQmWhmFJ76GeMr7llnPAJ-pjBCnwH3gIOC9xA3-OZi8lsBOM7_JKVogk-GZvwDHx0aY2DxzfNM34wCSJu11l_c5l_dMuxN8kFH_95b2FMQ2bn7ysY3BJ8ith5bLDghV_i32P_B98PwUKMB2h3YfoIh191Hz2fz5-ay-L67uKqObsuLBMkFZItykrwVplOSsYVdDUDy6htbUcUKakExYhlIAWVLRekFqpr25rTrqtsy6p99Gs7dzWEvyPEpJcu2nyj8RDGqGktRZ7CWZnRk2_oaxgHn7fT-bOM0bwIzxTZUnYIMQ6w0Kt8qhnWmhK9SUbnZPQmGf2VTLYcby0OAP7jQlaloKT6BCYSiLU</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kuiyuan Zhang</creator><creator>Furuta, Jun</creator><creator>Kobayashi, Kazutoshi</creator><creator>Onodera, Hidetoshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140801</creationdate><title>Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process</title><author>Kuiyuan Zhang ; Furuta, Jun ; Kobayashi, Kazutoshi ; Onodera, Hidetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-84f2365b9ad88459ed74ec41cbcd090218e940c4e8618b560769dbb751dd3cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bulk density</topic><topic>Charge</topic><topic>Density</topic><topic>Device-stimulation</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Integrated circuit modeling</topic><topic>Inverters</topic><topic>Latches</topic><topic>Layout</topic><topic>MCU</topic><topic>neutron irradiation</topic><topic>Neutrons</topic><topic>parasitic bipolar effect</topic><topic>Redundant</topic><topic>Shift registers</topic><topic>Simulation</topic><topic>soft error</topic><topic>Transaction processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuiyuan Zhang</creatorcontrib><creatorcontrib>Furuta, Jun</creatorcontrib><creatorcontrib>Kobayashi, Kazutoshi</creatorcontrib><creatorcontrib>Onodera, Hidetoshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuiyuan Zhang</au><au>Furuta, Jun</au><au>Kobayashi, Kazutoshi</au><au>Onodera, Hidetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>61</volume><issue>4</issue><spage>1583</spage><epage>1589</epage><pages>1583-1589</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Technology scaling increases the role of charge sharing and bipolar effect with respect to multiple cell upset. We analyze the contributions of cell distance and well-contact density to suppress MCU by device-level simulations and neutron experiments. Device simulation results reveal that the ratio of MCU to SEU exponentially decreases by increasing the distance between redundant latches. MCU is suppressed when well contacts are placed between redundant latches. Experimental results also show that the ratio of MCU to SEU exponentially decreases by increasing the distance between cells. MCU is suppressed effectively by increasing the density of well contacts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2014.2314292</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2014-08, Vol.61 (4), p.1583-1589
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_1554413655
source IEEE Electronic Library (IEL)
subjects Bulk density
Charge
Density
Device-stimulation
Devices
Electric potential
Integrated circuit modeling
Inverters
Latches
Layout
MCU
neutron irradiation
Neutrons
parasitic bipolar effect
Redundant
Shift registers
Simulation
soft error
Transaction processing
title Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20Cell%20Distance%20and%20Well-Contact%20Density%20on%20MCU%20Rates%20by%20Device%20Simulations%20and%20Neutron%20Experiments%20in%20a%2065-nm%20Bulk%20Process&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Kuiyuan%20Zhang&rft.date=2014-08-01&rft.volume=61&rft.issue=4&rft.spage=1583&rft.epage=1589&rft.pages=1583-1589&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2014.2314292&rft_dat=%3Cproquest_RIE%3E3407424231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554413655&rft_id=info:pmid/&rft_ieee_id=6832610&rfr_iscdi=true