Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions
Radiation response of bipolar devices irradiated under various electrical modes and dose rates at high doses has been studied. A nonlinear numerical model including ELDRS effects and electric field reduction at high doses has been developed and validated. Dose degradation of a bipolar transistor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2014-08, Vol.61 (4), p.1785-1790 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1790 |
---|---|
container_issue | 4 |
container_start_page | 1785 |
container_title | IEEE transactions on nuclear science |
container_volume | 61 |
creator | Zebrev, Gennady I. Petrov, Alexander S. Useinov, Rustem G. Ikhsanov, Renat S. Ulimov, Viktor N. Anashin, Vasily S. Elushov, Ilya V. Drosdetsky, Maxim G. Galimov, Artur M. |
description | Radiation response of bipolar devices irradiated under various electrical modes and dose rates at high doses has been studied. A nonlinear numerical model including ELDRS effects and electric field reduction at high doses has been developed and validated. Dose degradation of a bipolar transistor's gain factor at different dose rates and electrical modes has been simulated and explained in a unified way, based on dependence of the charge yield in isolation oxides on dose rates and electric fields. It has been shown that at high doses one needs to use a nonlinear, self-consistent numerical approach, accounting for simultaneous suppression of the oxide electric field induced by trapped charge. Correspondingly, two types of degradation saturation have been revealed: (i) due to simultaneous thermal annealing, and (ii) due to total dose dependent electric field reduction in oxides. The former implies proportionality of the saturation dose and degradation level to dose rate, the latter permits dose rate independent saturation levels of degradation. |
doi_str_mv | 10.1109/TNS.2014.2315672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1554413468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6841645</ieee_id><sourcerecordid>3407424291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9ea7895bb54a35c9f09d6a2f34659d55733ebf1405138ecd9530c7826582b8c63</originalsourceid><addsrcrecordid>eNpdkTFPwzAQhS0EEqWwI7FYYmFJsWM7sUdoC0UqINHCajmOU1ylcbCTgX-PoyAGptOdvnf3dA-AS4xmGCNxu33ZzFKE6SwlmGV5egQmmDGeYJbzYzBBCPNEUCFOwVkI-9hShtgEtBt76GvVWddAV8F727paebj1qgk2dM7Dhdl5VY6E6uCH8tb1AS5cMPBNdSZA1ZRwWRvdeatVDZ9dGYdVlK7s7nME564p7bAinIOTStXBXPzWKXh_WG7nq2T9-vg0v1snmgjaJcKonAtWFIwqwrSokCgzlVaEZkyUjOWEmKLCFDFMuNGlYATpnKcZ42nBdUam4Gbc23r31ZvQyYMN2tS1akz0L3HOsxTzlAzo9T9073rfRHcyvpBSHI_ySKGR0t6F4E0lW28Pyn9LjOQQgYwRyCEC-RtBlFyNEmuM-cMzTnFGGfkBCeSBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554413468</pqid></control><display><type>article</type><title>Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions</title><source>IEEE Xplore</source><creator>Zebrev, Gennady I. ; Petrov, Alexander S. ; Useinov, Rustem G. ; Ikhsanov, Renat S. ; Ulimov, Viktor N. ; Anashin, Vasily S. ; Elushov, Ilya V. ; Drosdetsky, Maxim G. ; Galimov, Artur M.</creator><creatorcontrib>Zebrev, Gennady I. ; Petrov, Alexander S. ; Useinov, Rustem G. ; Ikhsanov, Renat S. ; Ulimov, Viktor N. ; Anashin, Vasily S. ; Elushov, Ilya V. ; Drosdetsky, Maxim G. ; Galimov, Artur M.</creatorcontrib><description>Radiation response of bipolar devices irradiated under various electrical modes and dose rates at high doses has been studied. A nonlinear numerical model including ELDRS effects and electric field reduction at high doses has been developed and validated. Dose degradation of a bipolar transistor's gain factor at different dose rates and electrical modes has been simulated and explained in a unified way, based on dependence of the charge yield in isolation oxides on dose rates and electric fields. It has been shown that at high doses one needs to use a nonlinear, self-consistent numerical approach, accounting for simultaneous suppression of the oxide electric field induced by trapped charge. Correspondingly, two types of degradation saturation have been revealed: (i) due to simultaneous thermal annealing, and (ii) due to total dose dependent electric field reduction in oxides. The former implies proportionality of the saturation dose and degradation level to dose rate, the latter permits dose rate independent saturation levels of degradation.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2014.2315672</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; bipolar devices ; Bipolar transistors ; Computer simulation ; Degradation ; Dosage ; dose rate effects ; ELDRS ; Electric fields ; Equations ; Mathematical model ; Mathematical models ; modeling ; Oxides ; Radiation effects ; radiation effects in devices ; Reduction ; Saturation ; Silicon ; simulation ; total dose effects</subject><ispartof>IEEE transactions on nuclear science, 2014-08, Vol.61 (4), p.1785-1790</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9ea7895bb54a35c9f09d6a2f34659d55733ebf1405138ecd9530c7826582b8c63</citedby><cites>FETCH-LOGICAL-c394t-9ea7895bb54a35c9f09d6a2f34659d55733ebf1405138ecd9530c7826582b8c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6841645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6841645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zebrev, Gennady I.</creatorcontrib><creatorcontrib>Petrov, Alexander S.</creatorcontrib><creatorcontrib>Useinov, Rustem G.</creatorcontrib><creatorcontrib>Ikhsanov, Renat S.</creatorcontrib><creatorcontrib>Ulimov, Viktor N.</creatorcontrib><creatorcontrib>Anashin, Vasily S.</creatorcontrib><creatorcontrib>Elushov, Ilya V.</creatorcontrib><creatorcontrib>Drosdetsky, Maxim G.</creatorcontrib><creatorcontrib>Galimov, Artur M.</creatorcontrib><title>Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Radiation response of bipolar devices irradiated under various electrical modes and dose rates at high doses has been studied. A nonlinear numerical model including ELDRS effects and electric field reduction at high doses has been developed and validated. Dose degradation of a bipolar transistor's gain factor at different dose rates and electrical modes has been simulated and explained in a unified way, based on dependence of the charge yield in isolation oxides on dose rates and electric fields. It has been shown that at high doses one needs to use a nonlinear, self-consistent numerical approach, accounting for simultaneous suppression of the oxide electric field induced by trapped charge. Correspondingly, two types of degradation saturation have been revealed: (i) due to simultaneous thermal annealing, and (ii) due to total dose dependent electric field reduction in oxides. The former implies proportionality of the saturation dose and degradation level to dose rate, the latter permits dose rate independent saturation levels of degradation.</description><subject>Annealing</subject><subject>bipolar devices</subject><subject>Bipolar transistors</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Dosage</subject><subject>dose rate effects</subject><subject>ELDRS</subject><subject>Electric fields</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Oxides</subject><subject>Radiation effects</subject><subject>radiation effects in devices</subject><subject>Reduction</subject><subject>Saturation</subject><subject>Silicon</subject><subject>simulation</subject><subject>total dose effects</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkTFPwzAQhS0EEqWwI7FYYmFJsWM7sUdoC0UqINHCajmOU1ylcbCTgX-PoyAGptOdvnf3dA-AS4xmGCNxu33ZzFKE6SwlmGV5egQmmDGeYJbzYzBBCPNEUCFOwVkI-9hShtgEtBt76GvVWddAV8F727paebj1qgk2dM7Dhdl5VY6E6uCH8tb1AS5cMPBNdSZA1ZRwWRvdeatVDZ9dGYdVlK7s7nME564p7bAinIOTStXBXPzWKXh_WG7nq2T9-vg0v1snmgjaJcKonAtWFIwqwrSokCgzlVaEZkyUjOWEmKLCFDFMuNGlYATpnKcZ42nBdUam4Gbc23r31ZvQyYMN2tS1akz0L3HOsxTzlAzo9T9073rfRHcyvpBSHI_ySKGR0t6F4E0lW28Pyn9LjOQQgYwRyCEC-RtBlFyNEmuM-cMzTnFGGfkBCeSBbA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zebrev, Gennady I.</creator><creator>Petrov, Alexander S.</creator><creator>Useinov, Rustem G.</creator><creator>Ikhsanov, Renat S.</creator><creator>Ulimov, Viktor N.</creator><creator>Anashin, Vasily S.</creator><creator>Elushov, Ilya V.</creator><creator>Drosdetsky, Maxim G.</creator><creator>Galimov, Artur M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140801</creationdate><title>Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions</title><author>Zebrev, Gennady I. ; Petrov, Alexander S. ; Useinov, Rustem G. ; Ikhsanov, Renat S. ; Ulimov, Viktor N. ; Anashin, Vasily S. ; Elushov, Ilya V. ; Drosdetsky, Maxim G. ; Galimov, Artur M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9ea7895bb54a35c9f09d6a2f34659d55733ebf1405138ecd9530c7826582b8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>bipolar devices</topic><topic>Bipolar transistors</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Dosage</topic><topic>dose rate effects</topic><topic>ELDRS</topic><topic>Electric fields</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Oxides</topic><topic>Radiation effects</topic><topic>radiation effects in devices</topic><topic>Reduction</topic><topic>Saturation</topic><topic>Silicon</topic><topic>simulation</topic><topic>total dose effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zebrev, Gennady I.</creatorcontrib><creatorcontrib>Petrov, Alexander S.</creatorcontrib><creatorcontrib>Useinov, Rustem G.</creatorcontrib><creatorcontrib>Ikhsanov, Renat S.</creatorcontrib><creatorcontrib>Ulimov, Viktor N.</creatorcontrib><creatorcontrib>Anashin, Vasily S.</creatorcontrib><creatorcontrib>Elushov, Ilya V.</creatorcontrib><creatorcontrib>Drosdetsky, Maxim G.</creatorcontrib><creatorcontrib>Galimov, Artur M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zebrev, Gennady I.</au><au>Petrov, Alexander S.</au><au>Useinov, Rustem G.</au><au>Ikhsanov, Renat S.</au><au>Ulimov, Viktor N.</au><au>Anashin, Vasily S.</au><au>Elushov, Ilya V.</au><au>Drosdetsky, Maxim G.</au><au>Galimov, Artur M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>61</volume><issue>4</issue><spage>1785</spage><epage>1790</epage><pages>1785-1790</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Radiation response of bipolar devices irradiated under various electrical modes and dose rates at high doses has been studied. A nonlinear numerical model including ELDRS effects and electric field reduction at high doses has been developed and validated. Dose degradation of a bipolar transistor's gain factor at different dose rates and electrical modes has been simulated and explained in a unified way, based on dependence of the charge yield in isolation oxides on dose rates and electric fields. It has been shown that at high doses one needs to use a nonlinear, self-consistent numerical approach, accounting for simultaneous suppression of the oxide electric field induced by trapped charge. Correspondingly, two types of degradation saturation have been revealed: (i) due to simultaneous thermal annealing, and (ii) due to total dose dependent electric field reduction in oxides. The former implies proportionality of the saturation dose and degradation level to dose rate, the latter permits dose rate independent saturation levels of degradation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2014.2315672</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2014-08, Vol.61 (4), p.1785-1790 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_1554413468 |
source | IEEE Xplore |
subjects | Annealing bipolar devices Bipolar transistors Computer simulation Degradation Dosage dose rate effects ELDRS Electric fields Equations Mathematical model Mathematical models modeling Oxides Radiation effects radiation effects in devices Reduction Saturation Silicon simulation total dose effects |
title | Simulation of Bipolar Transistor Degradation at Various Dose Rates and Electrical Modes for High Dose Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Bipolar%20Transistor%20Degradation%20at%20Various%20Dose%20Rates%20and%20Electrical%20Modes%20for%20High%20Dose%20Conditions&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Zebrev,%20Gennady%20I.&rft.date=2014-08-01&rft.volume=61&rft.issue=4&rft.spage=1785&rft.epage=1790&rft.pages=1785-1790&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2014.2315672&rft_dat=%3Cproquest_RIE%3E3407424291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554413468&rft_id=info:pmid/&rft_ieee_id=6841645&rfr_iscdi=true |