Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates

This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Maritime economics & logistics 2014-09, Vol.16 (3), p.298-320
Hauptverfasser: Chang, Chao-Chi, Chih Chou, Heng, Chou Wu, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 3
container_start_page 298
container_title Maritime economics & logistics
container_volume 16
creator Chang, Chao-Chi
Chih Chou, Heng
Chou Wu, Chun
description This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student- t and skewed Student- t distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student- t distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.
doi_str_mv 10.1057/mel.2014.13
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1553685424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3405193981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKsnv0DAo27N3232KMWqUPCi4i0ku0mbNtutSVbYb29qRTx4mmHmN483D4BLjCYY8elta_yEIMwmmB6BEWbTqiAVez_-7Sk-BWcxrhHKc05HQL0p35tCpSK4uIFqq_wQXYSdhWlloIpD25oUXA19t10WrWm7MMDPzqvkvEsD3IWuNvH7oMkb3fsNtMG45SrBoJKJ5-DEKh_NxU8dg9f5_cvssVg8PzzN7hZFTUuSihKxkmhdNYLSCluBuNBa1A3PVrVuhMKktIpzXNOmJtRaRIRijbVTzYSuLB2Dq4NudvTRm5jkuutD_idKzDktBWeEZer6QNWhizEYK3fBtSoMEiO5z1DmDOU-Q4lppm8OdMzUdmnCH81_8C9bGnTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553685424</pqid></control><display><type>article</type><title>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</title><source>SpringerLink Journals</source><creator>Chang, Chao-Chi ; Chih Chou, Heng ; Chou Wu, Chun</creator><creatorcontrib>Chang, Chao-Chi ; Chih Chou, Heng ; Chou Wu, Chun</creatorcontrib><description>This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student- t and skewed Student- t distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student- t distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.</description><identifier>ISSN: 1479-2931</identifier><identifier>EISSN: 1479-294X</identifier><identifier>DOI: 10.1057/mel.2014.13</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Business and Management ; Forecasting techniques ; Freight ; Logistics ; Operations Management ; Original Article ; Rates ; Risk analysis ; Shipping industry ; Stochastic models ; Studies ; Time series ; Volatility</subject><ispartof>Maritime economics &amp; logistics, 2014-09, Vol.16 (3), p.298-320</ispartof><rights>Palgrave Macmillan, a division of Macmillan Publishers Ltd 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</citedby><cites>FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1057/mel.2014.13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1057/mel.2014.13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chang, Chao-Chi</creatorcontrib><creatorcontrib>Chih Chou, Heng</creatorcontrib><creatorcontrib>Chou Wu, Chun</creatorcontrib><title>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</title><title>Maritime economics &amp; logistics</title><addtitle>Marit Econ Logist</addtitle><description>This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student- t and skewed Student- t distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student- t distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.</description><subject>Business and Management</subject><subject>Forecasting techniques</subject><subject>Freight</subject><subject>Logistics</subject><subject>Operations Management</subject><subject>Original Article</subject><subject>Rates</subject><subject>Risk analysis</subject><subject>Shipping industry</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time series</subject><subject>Volatility</subject><issn>1479-2931</issn><issn>1479-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9LAzEQxYMoWKsnv0DAo27N3232KMWqUPCi4i0ku0mbNtutSVbYb29qRTx4mmHmN483D4BLjCYY8elta_yEIMwmmB6BEWbTqiAVez_-7Sk-BWcxrhHKc05HQL0p35tCpSK4uIFqq_wQXYSdhWlloIpD25oUXA19t10WrWm7MMDPzqvkvEsD3IWuNvH7oMkb3fsNtMG45SrBoJKJ5-DEKh_NxU8dg9f5_cvssVg8PzzN7hZFTUuSihKxkmhdNYLSCluBuNBa1A3PVrVuhMKktIpzXNOmJtRaRIRijbVTzYSuLB2Dq4NudvTRm5jkuutD_idKzDktBWeEZer6QNWhizEYK3fBtSoMEiO5z1DmDOU-Q4lppm8OdMzUdmnCH81_8C9bGnTX</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Chang, Chao-Chi</creator><creator>Chih Chou, Heng</creator><creator>Chou Wu, Chun</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140901</creationdate><title>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</title><author>Chang, Chao-Chi ; Chih Chou, Heng ; Chou Wu, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Business and Management</topic><topic>Forecasting techniques</topic><topic>Freight</topic><topic>Logistics</topic><topic>Operations Management</topic><topic>Original Article</topic><topic>Rates</topic><topic>Risk analysis</topic><topic>Shipping industry</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chao-Chi</creatorcontrib><creatorcontrib>Chih Chou, Heng</creatorcontrib><creatorcontrib>Chou Wu, Chun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Maritime economics &amp; logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chao-Chi</au><au>Chih Chou, Heng</au><au>Chou Wu, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</atitle><jtitle>Maritime economics &amp; logistics</jtitle><stitle>Marit Econ Logist</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>16</volume><issue>3</issue><spage>298</spage><epage>320</epage><pages>298-320</pages><issn>1479-2931</issn><eissn>1479-294X</eissn><abstract>This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student- t and skewed Student- t distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student- t distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/mel.2014.13</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1479-2931
ispartof Maritime economics & logistics, 2014-09, Vol.16 (3), p.298-320
issn 1479-2931
1479-294X
language eng
recordid cdi_proquest_journals_1553685424
source SpringerLink Journals
subjects Business and Management
Forecasting techniques
Freight
Logistics
Operations Management
Original Article
Rates
Risk analysis
Shipping industry
Stochastic models
Studies
Time series
Volatility
title Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value-at-risk%20analysis%20of%20the%20asymmetric%20long-memory%20volatility%20process%20of%20dry%20bulk%20freight%20rates&rft.jtitle=Maritime%20economics%20&%20logistics&rft.au=Chang,%20Chao-Chi&rft.date=2014-09-01&rft.volume=16&rft.issue=3&rft.spage=298&rft.epage=320&rft.pages=298-320&rft.issn=1479-2931&rft.eissn=1479-294X&rft_id=info:doi/10.1057/mel.2014.13&rft_dat=%3Cproquest_cross%3E3405193981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553685424&rft_id=info:pmid/&rfr_iscdi=true