Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates
This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrate...
Gespeichert in:
Veröffentlicht in: | Maritime economics & logistics 2014-09, Vol.16 (3), p.298-320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 3 |
container_start_page | 298 |
container_title | Maritime economics & logistics |
container_volume | 16 |
creator | Chang, Chao-Chi Chih Chou, Heng Chou Wu, Chun |
description | This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student-
t
and skewed Student-
t
distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student-
t
distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies. |
doi_str_mv | 10.1057/mel.2014.13 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1553685424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3405193981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKsnv0DAo27N3232KMWqUPCi4i0ku0mbNtutSVbYb29qRTx4mmHmN483D4BLjCYY8elta_yEIMwmmB6BEWbTqiAVez_-7Sk-BWcxrhHKc05HQL0p35tCpSK4uIFqq_wQXYSdhWlloIpD25oUXA19t10WrWm7MMDPzqvkvEsD3IWuNvH7oMkb3fsNtMG45SrBoJKJ5-DEKh_NxU8dg9f5_cvssVg8PzzN7hZFTUuSihKxkmhdNYLSCluBuNBa1A3PVrVuhMKktIpzXNOmJtRaRIRijbVTzYSuLB2Dq4NudvTRm5jkuutD_idKzDktBWeEZer6QNWhizEYK3fBtSoMEiO5z1DmDOU-Q4lppm8OdMzUdmnCH81_8C9bGnTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553685424</pqid></control><display><type>article</type><title>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</title><source>SpringerLink Journals</source><creator>Chang, Chao-Chi ; Chih Chou, Heng ; Chou Wu, Chun</creator><creatorcontrib>Chang, Chao-Chi ; Chih Chou, Heng ; Chou Wu, Chun</creatorcontrib><description>This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student-
t
and skewed Student-
t
distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student-
t
distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.</description><identifier>ISSN: 1479-2931</identifier><identifier>EISSN: 1479-294X</identifier><identifier>DOI: 10.1057/mel.2014.13</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Business and Management ; Forecasting techniques ; Freight ; Logistics ; Operations Management ; Original Article ; Rates ; Risk analysis ; Shipping industry ; Stochastic models ; Studies ; Time series ; Volatility</subject><ispartof>Maritime economics & logistics, 2014-09, Vol.16 (3), p.298-320</ispartof><rights>Palgrave Macmillan, a division of Macmillan Publishers Ltd 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</citedby><cites>FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1057/mel.2014.13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1057/mel.2014.13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chang, Chao-Chi</creatorcontrib><creatorcontrib>Chih Chou, Heng</creatorcontrib><creatorcontrib>Chou Wu, Chun</creatorcontrib><title>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</title><title>Maritime economics & logistics</title><addtitle>Marit Econ Logist</addtitle><description>This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student-
t
and skewed Student-
t
distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student-
t
distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.</description><subject>Business and Management</subject><subject>Forecasting techniques</subject><subject>Freight</subject><subject>Logistics</subject><subject>Operations Management</subject><subject>Original Article</subject><subject>Rates</subject><subject>Risk analysis</subject><subject>Shipping industry</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time series</subject><subject>Volatility</subject><issn>1479-2931</issn><issn>1479-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9LAzEQxYMoWKsnv0DAo27N3232KMWqUPCi4i0ku0mbNtutSVbYb29qRTx4mmHmN483D4BLjCYY8elta_yEIMwmmB6BEWbTqiAVez_-7Sk-BWcxrhHKc05HQL0p35tCpSK4uIFqq_wQXYSdhWlloIpD25oUXA19t10WrWm7MMDPzqvkvEsD3IWuNvH7oMkb3fsNtMG45SrBoJKJ5-DEKh_NxU8dg9f5_cvssVg8PzzN7hZFTUuSihKxkmhdNYLSCluBuNBa1A3PVrVuhMKktIpzXNOmJtRaRIRijbVTzYSuLB2Dq4NudvTRm5jkuutD_idKzDktBWeEZer6QNWhizEYK3fBtSoMEiO5z1DmDOU-Q4lppm8OdMzUdmnCH81_8C9bGnTX</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Chang, Chao-Chi</creator><creator>Chih Chou, Heng</creator><creator>Chou Wu, Chun</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140901</creationdate><title>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</title><author>Chang, Chao-Chi ; Chih Chou, Heng ; Chou Wu, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-60462bb9d83391f8058bb8cd5002bbd8a126fa551c3dc23ff028a4dff7b48b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Business and Management</topic><topic>Forecasting techniques</topic><topic>Freight</topic><topic>Logistics</topic><topic>Operations Management</topic><topic>Original Article</topic><topic>Rates</topic><topic>Risk analysis</topic><topic>Shipping industry</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chao-Chi</creatorcontrib><creatorcontrib>Chih Chou, Heng</creatorcontrib><creatorcontrib>Chou Wu, Chun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Maritime economics & logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chao-Chi</au><au>Chih Chou, Heng</au><au>Chou Wu, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates</atitle><jtitle>Maritime economics & logistics</jtitle><stitle>Marit Econ Logist</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>16</volume><issue>3</issue><spage>298</spage><epage>320</epage><pages>298-320</pages><issn>1479-2931</issn><eissn>1479-294X</eissn><abstract>This study aims to apply value-at-risk (VaR) models to evaluate the risk of dry bulk freight rates when there is an asymmetric long-memory volatility process. The VaR estimations as well as expected shortfalls for both short and long trading positions are conducted. We use the Fractionally Integrated GARCH, Hyperbolic GARCH and Fractionally Integrated APARCH models to analyse the performance of the VaR models with the normal, Student-
t
and skewed Student-
t
distributions. Empirical results suggest that precise VaR estimates may be obtained from an asymmetric long-memory volatility structure with the skewed Student-
t
distribution. Moreover, the asymmetric FIAPARCH model outperforms than other models in out-of-sampling forecasting. Therefore, our findings provide a more accurate estimation of VaR for dry bulk freight rates. These results present several potential implications for dry bulk freight market risk quantification and hedging strategies.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/mel.2014.13</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-2931 |
ispartof | Maritime economics & logistics, 2014-09, Vol.16 (3), p.298-320 |
issn | 1479-2931 1479-294X |
language | eng |
recordid | cdi_proquest_journals_1553685424 |
source | SpringerLink Journals |
subjects | Business and Management Forecasting techniques Freight Logistics Operations Management Original Article Rates Risk analysis Shipping industry Stochastic models Studies Time series Volatility |
title | Value-at-risk analysis of the asymmetric long-memory volatility process of dry bulk freight rates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value-at-risk%20analysis%20of%20the%20asymmetric%20long-memory%20volatility%20process%20of%20dry%20bulk%20freight%20rates&rft.jtitle=Maritime%20economics%20&%20logistics&rft.au=Chang,%20Chao-Chi&rft.date=2014-09-01&rft.volume=16&rft.issue=3&rft.spage=298&rft.epage=320&rft.pages=298-320&rft.issn=1479-2931&rft.eissn=1479-294X&rft_id=info:doi/10.1057/mel.2014.13&rft_dat=%3Cproquest_cross%3E3405193981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553685424&rft_id=info:pmid/&rfr_iscdi=true |