FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots

Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN) and introduce a method for FPGA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mechanical Engineering 2014-01, Vol.6, p.180620
Hauptverfasser: Xue, Fangzheng, Wang, Wei, Li, Nan, Yang, Yuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 180620
container_title Advances in Mechanical Engineering
container_volume 6
creator Xue, Fangzheng
Wang, Wei
Li, Nan
Yang, Yuchao
description Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN) and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals) and conditioned reflex (make right choices in multiple T-maze) by spike timing-dependent plasticity (STDP) learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.
doi_str_mv 10.1155/2014/180620
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1552816171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1155_2014/180620</sage_id><doaj_id>oai_doaj_org_article_9e857548b6e94146ba6f3469331a97af</doaj_id><sourcerecordid>3400531511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-b0b4d9f444a9acdc9bc7c3da71eb1d65a8896210de29ec84a413d08dc680c6ae3</originalsourceid><addsrcrecordid>eNptkU1r3DAQhk1JoUuaU_6AIJdAcKKxZVk6Lks-FrZNSdJDTmIkjRclXmsjewnNr6-3LiGHnGYYHp4Z5s2yY-DnAFV1UXAQF6C4LPiXbAZS1bkCwQ_e-7L4lh31fbC84pJzqfUse7z6dT1ny822pQ11Aw4hdiw27J7aJr9Na-zCG3l2vw3PoVuzn7RL2I5leI3pmS1iN6TYtpRYExP7EW1oid1FG4f-e_a1wbano__1MPt9dfmwuMlXt9fLxXyVo5ByyC23wutGCIEanXfautqVHmsgC15WqJSWBXBPhSanBAooPVfeScWdRCoPs-Xk9RGfzDaFDaY_JmIw_wYxrQ2mIbiWjCZV1ZVQVpIWIKRF2ZRC6rIE1DU2o-tkcm1TfNlRP5inuEvdeL4ZP1wokFDDSJ1NlEux7xM171uBm30UZh-FmaIY6dOJ7nFNH3yfoH8B6pOGNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552816171</pqid></control><display><type>article</type><title>FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xue, Fangzheng ; Wang, Wei ; Li, Nan ; Yang, Yuchao</creator><creatorcontrib>Xue, Fangzheng ; Wang, Wei ; Li, Nan ; Yang, Yuchao</creatorcontrib><description>Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN) and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals) and conditioned reflex (make right choices in multiple T-maze) by spike timing-dependent plasticity (STDP) learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.</description><identifier>ISSN: 1687-8132</identifier><identifier>ISSN: 1687-8140</identifier><identifier>EISSN: 1687-8140</identifier><identifier>EISSN: 1687-8132</identifier><identifier>DOI: 10.1155/2014/180620</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Behavior ; Dopamine ; Experiments ; Neural networks ; Neurons ; Robots ; Sensors</subject><ispartof>Advances in Mechanical Engineering, 2014-01, Vol.6, p.180620</ispartof><rights>2014 Fangzheng Xue et al.</rights><rights>Copyright © 2014 Fangzheng Xue et al. Fangzheng Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-b0b4d9f444a9acdc9bc7c3da71eb1d65a8896210de29ec84a413d08dc680c6ae3</citedby><cites>FETCH-LOGICAL-a466t-b0b4d9f444a9acdc9bc7c3da71eb1d65a8896210de29ec84a413d08dc680c6ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1155/2014/180620$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1155/2014/180620$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Xue, Fangzheng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Yang, Yuchao</creatorcontrib><title>FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots</title><title>Advances in Mechanical Engineering</title><description>Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN) and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals) and conditioned reflex (make right choices in multiple T-maze) by spike timing-dependent plasticity (STDP) learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.</description><subject>Behavior</subject><subject>Dopamine</subject><subject>Experiments</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Robots</subject><subject>Sensors</subject><issn>1687-8132</issn><issn>1687-8140</issn><issn>1687-8140</issn><issn>1687-8132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1r3DAQhk1JoUuaU_6AIJdAcKKxZVk6Lks-FrZNSdJDTmIkjRclXmsjewnNr6-3LiGHnGYYHp4Z5s2yY-DnAFV1UXAQF6C4LPiXbAZS1bkCwQ_e-7L4lh31fbC84pJzqfUse7z6dT1ny822pQ11Aw4hdiw27J7aJr9Na-zCG3l2vw3PoVuzn7RL2I5leI3pmS1iN6TYtpRYExP7EW1oid1FG4f-e_a1wbano__1MPt9dfmwuMlXt9fLxXyVo5ByyC23wutGCIEanXfautqVHmsgC15WqJSWBXBPhSanBAooPVfeScWdRCoPs-Xk9RGfzDaFDaY_JmIw_wYxrQ2mIbiWjCZV1ZVQVpIWIKRF2ZRC6rIE1DU2o-tkcm1TfNlRP5inuEvdeL4ZP1wokFDDSJ1NlEux7xM171uBm30UZh-FmaIY6dOJ7nFNH3yfoH8B6pOGNQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Xue, Fangzheng</creator><creator>Wang, Wei</creator><creator>Li, Nan</creator><creator>Yang, Yuchao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots</title><author>Xue, Fangzheng ; Wang, Wei ; Li, Nan ; Yang, Yuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-b0b4d9f444a9acdc9bc7c3da71eb1d65a8896210de29ec84a413d08dc680c6ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Behavior</topic><topic>Dopamine</topic><topic>Experiments</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Robots</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Fangzheng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Yang, Yuchao</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Fangzheng</au><au>Wang, Wei</au><au>Li, Nan</au><au>Yang, Yuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots</atitle><jtitle>Advances in Mechanical Engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>6</volume><spage>180620</spage><pages>180620-</pages><issn>1687-8132</issn><issn>1687-8140</issn><eissn>1687-8140</eissn><eissn>1687-8132</eissn><abstract>Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN) and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals) and conditioned reflex (make right choices in multiple T-maze) by spike timing-dependent plasticity (STDP) learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1155/2014/180620</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8132
ispartof Advances in Mechanical Engineering, 2014-01, Vol.6, p.180620
issn 1687-8132
1687-8140
1687-8140
1687-8132
language eng
recordid cdi_proquest_journals_1552816171
source DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Behavior
Dopamine
Experiments
Neural networks
Neurons
Robots
Sensors
title FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA%20Implementation%20of%20Self-Organized%20Spiking%20Neural%20Network%20Controller%20for%20Mobile%20Robots&rft.jtitle=Advances%20in%20Mechanical%20Engineering&rft.au=Xue,%20Fangzheng&rft.date=2014-01-01&rft.volume=6&rft.spage=180620&rft.pages=180620-&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1155/2014/180620&rft_dat=%3Cproquest_doaj_%3E3400531511%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552816171&rft_id=info:pmid/&rft_sage_id=10.1155_2014/180620&rft_doaj_id=oai_doaj_org_article_9e857548b6e94146ba6f3469331a97af&rfr_iscdi=true