Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes

The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2014-07, Vol.32 (3), p.341-358
Hauptverfasser: de Haan, Jan, Krsinich, Frances
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 3
container_start_page 341
container_title Journal of business & economic statistics
container_volume 32
creator de Haan, Jan
Krsinich, Frances
description The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.
doi_str_mv 10.1080/07350015.2014.880059
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1552443504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43702765</jstor_id><sourcerecordid>43702765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoK7Tf5CAoOd1R1_W-hSCk7SGkA_qnIVWO4rXrKVUkpv433fNtjl2LnN4n3cGHkLOGMwY1PANtFAATM04MDmrawC1-EAmTAldcQ36I5kckerIfCKfc97CMLWaT8jdT2dDwESvbLHUhpaWDdJ1Qlt2GAqNnj7ubd-VA11ubHhG2gV6F0PC3122TY_0IXUO6Sq0-Ib5lJx422f88ndPydPN9Xr5o7q9_75aXt5WTnJWKjlvgDfaM4mNEs5xyzUT6BQieO2dU6xVjZALDsJ7z2vRNguQ9VB2C2fnYkq-jndfUvy1x1zMNu5TGF4aphSXchAiB0qOlEsx54TevKRuZ9PBMDBHc-afOXM0Z0ZzQ-18rG1ziem9I4UGrudqyC_GvAs-pp19jalvTbGHPiafbHBdNuK_H_4AoPJ9JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552443504</pqid></control><display><type>article</type><title>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</title><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>de Haan, Jan ; Krsinich, Frances</creator><creatorcontrib>de Haan, Jan ; Krsinich, Frances</creatorcontrib><description>The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2014.880059</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Consumer electronics ; Consumer Price Index ; Economic indices ; Economic statistics ; Estimation methods ; Hedonic regression ; Imputation ; Index numbers ; Laptop computers ; Multilateral index number methods ; Portable media players ; Price comparisons ; Price indexes ; Price indices ; Product quality ; Quality adjustment ; Regression analysis ; Scanner data ; Scanners ; Studies ; Transitivity</subject><ispartof>Journal of business &amp; economic statistics, 2014-07, Vol.32 (3), p.341-358</ispartof><rights>2014 American Statistical Association 2014</rights><rights>Copyright © 2014 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</citedby><cites>FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43702765$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43702765$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>de Haan, Jan</creatorcontrib><creatorcontrib>Krsinich, Frances</creatorcontrib><title>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</title><title>Journal of business &amp; economic statistics</title><description>The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.</description><subject>Consumer electronics</subject><subject>Consumer Price Index</subject><subject>Economic indices</subject><subject>Economic statistics</subject><subject>Estimation methods</subject><subject>Hedonic regression</subject><subject>Imputation</subject><subject>Index numbers</subject><subject>Laptop computers</subject><subject>Multilateral index number methods</subject><subject>Portable media players</subject><subject>Price comparisons</subject><subject>Price indexes</subject><subject>Price indices</subject><subject>Product quality</subject><subject>Quality adjustment</subject><subject>Regression analysis</subject><subject>Scanner data</subject><subject>Scanners</subject><subject>Studies</subject><subject>Transitivity</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoK7Tf5CAoOd1R1_W-hSCk7SGkA_qnIVWO4rXrKVUkpv433fNtjl2LnN4n3cGHkLOGMwY1PANtFAATM04MDmrawC1-EAmTAldcQ36I5kckerIfCKfc97CMLWaT8jdT2dDwESvbLHUhpaWDdJ1Qlt2GAqNnj7ubd-VA11ubHhG2gV6F0PC3122TY_0IXUO6Sq0-Ib5lJx422f88ndPydPN9Xr5o7q9_75aXt5WTnJWKjlvgDfaM4mNEs5xyzUT6BQieO2dU6xVjZALDsJ7z2vRNguQ9VB2C2fnYkq-jndfUvy1x1zMNu5TGF4aphSXchAiB0qOlEsx54TevKRuZ9PBMDBHc-afOXM0Z0ZzQ-18rG1ziem9I4UGrudqyC_GvAs-pp19jalvTbGHPiafbHBdNuK_H_4AoPJ9JQ</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>de Haan, Jan</creator><creator>Krsinich, Frances</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140703</creationdate><title>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</title><author>de Haan, Jan ; Krsinich, Frances</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Consumer electronics</topic><topic>Consumer Price Index</topic><topic>Economic indices</topic><topic>Economic statistics</topic><topic>Estimation methods</topic><topic>Hedonic regression</topic><topic>Imputation</topic><topic>Index numbers</topic><topic>Laptop computers</topic><topic>Multilateral index number methods</topic><topic>Portable media players</topic><topic>Price comparisons</topic><topic>Price indexes</topic><topic>Price indices</topic><topic>Product quality</topic><topic>Quality adjustment</topic><topic>Regression analysis</topic><topic>Scanner data</topic><topic>Scanners</topic><topic>Studies</topic><topic>Transitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Haan, Jan</creatorcontrib><creatorcontrib>Krsinich, Frances</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Haan, Jan</au><au>Krsinich, Frances</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2014-07-03</date><risdate>2014</risdate><volume>32</volume><issue>3</issue><spage>341</spage><epage>358</epage><pages>341-358</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.2014.880059</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2014-07, Vol.32 (3), p.341-358
issn 0735-0015
1537-2707
language eng
recordid cdi_proquest_journals_1552443504
source Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Consumer electronics
Consumer Price Index
Economic indices
Economic statistics
Estimation methods
Hedonic regression
Imputation
Index numbers
Laptop computers
Multilateral index number methods
Portable media players
Price comparisons
Price indexes
Price indices
Product quality
Quality adjustment
Regression analysis
Scanner data
Scanners
Studies
Transitivity
title Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanner%20Data%20and%20the%20Treatment%20of%20Quality%20Change%20in%20Nonrevisable%20Price%20Indexes&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=de%20Haan,%20Jan&rft.date=2014-07-03&rft.volume=32&rft.issue=3&rft.spage=341&rft.epage=358&rft.pages=341-358&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2014.880059&rft_dat=%3Cjstor_proqu%3E43702765%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552443504&rft_id=info:pmid/&rft_jstor_id=43702765&rfr_iscdi=true