Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes
The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as...
Gespeichert in:
Veröffentlicht in: | Journal of business & economic statistics 2014-07, Vol.32 (3), p.341-358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | Journal of business & economic statistics |
container_volume | 32 |
creator | de Haan, Jan Krsinich, Frances |
description | The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference. |
doi_str_mv | 10.1080/07350015.2014.880059 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1552443504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43702765</jstor_id><sourcerecordid>43702765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoK7Tf5CAoOd1R1_W-hSCk7SGkA_qnIVWO4rXrKVUkpv433fNtjl2LnN4n3cGHkLOGMwY1PANtFAATM04MDmrawC1-EAmTAldcQ36I5kckerIfCKfc97CMLWaT8jdT2dDwESvbLHUhpaWDdJ1Qlt2GAqNnj7ubd-VA11ubHhG2gV6F0PC3122TY_0IXUO6Sq0-Ib5lJx422f88ndPydPN9Xr5o7q9_75aXt5WTnJWKjlvgDfaM4mNEs5xyzUT6BQieO2dU6xVjZALDsJ7z2vRNguQ9VB2C2fnYkq-jndfUvy1x1zMNu5TGF4aphSXchAiB0qOlEsx54TevKRuZ9PBMDBHc-afOXM0Z0ZzQ-18rG1ziem9I4UGrudqyC_GvAs-pp19jalvTbGHPiafbHBdNuK_H_4AoPJ9JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552443504</pqid></control><display><type>article</type><title>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</title><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>de Haan, Jan ; Krsinich, Frances</creator><creatorcontrib>de Haan, Jan ; Krsinich, Frances</creatorcontrib><description>The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2014.880059</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Consumer electronics ; Consumer Price Index ; Economic indices ; Economic statistics ; Estimation methods ; Hedonic regression ; Imputation ; Index numbers ; Laptop computers ; Multilateral index number methods ; Portable media players ; Price comparisons ; Price indexes ; Price indices ; Product quality ; Quality adjustment ; Regression analysis ; Scanner data ; Scanners ; Studies ; Transitivity</subject><ispartof>Journal of business & economic statistics, 2014-07, Vol.32 (3), p.341-358</ispartof><rights>2014 American Statistical Association 2014</rights><rights>Copyright © 2014 American Statistical Association</rights><rights>Copyright Taylor & Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</citedby><cites>FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43702765$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43702765$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>de Haan, Jan</creatorcontrib><creatorcontrib>Krsinich, Frances</creatorcontrib><title>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</title><title>Journal of business & economic statistics</title><description>The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.</description><subject>Consumer electronics</subject><subject>Consumer Price Index</subject><subject>Economic indices</subject><subject>Economic statistics</subject><subject>Estimation methods</subject><subject>Hedonic regression</subject><subject>Imputation</subject><subject>Index numbers</subject><subject>Laptop computers</subject><subject>Multilateral index number methods</subject><subject>Portable media players</subject><subject>Price comparisons</subject><subject>Price indexes</subject><subject>Price indices</subject><subject>Product quality</subject><subject>Quality adjustment</subject><subject>Regression analysis</subject><subject>Scanner data</subject><subject>Scanners</subject><subject>Studies</subject><subject>Transitivity</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoK7Tf5CAoOd1R1_W-hSCk7SGkA_qnIVWO4rXrKVUkpv433fNtjl2LnN4n3cGHkLOGMwY1PANtFAATM04MDmrawC1-EAmTAldcQ36I5kckerIfCKfc97CMLWaT8jdT2dDwESvbLHUhpaWDdJ1Qlt2GAqNnj7ubd-VA11ubHhG2gV6F0PC3122TY_0IXUO6Sq0-Ib5lJx422f88ndPydPN9Xr5o7q9_75aXt5WTnJWKjlvgDfaM4mNEs5xyzUT6BQieO2dU6xVjZALDsJ7z2vRNguQ9VB2C2fnYkq-jndfUvy1x1zMNu5TGF4aphSXchAiB0qOlEsx54TevKRuZ9PBMDBHc-afOXM0Z0ZzQ-18rG1ziem9I4UGrudqyC_GvAs-pp19jalvTbGHPiafbHBdNuK_H_4AoPJ9JQ</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>de Haan, Jan</creator><creator>Krsinich, Frances</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140703</creationdate><title>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</title><author>de Haan, Jan ; Krsinich, Frances</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-46b02b7f14eb53cc2a2713ec5ee0f7fcc51d5b349203fff283db9048421c9ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Consumer electronics</topic><topic>Consumer Price Index</topic><topic>Economic indices</topic><topic>Economic statistics</topic><topic>Estimation methods</topic><topic>Hedonic regression</topic><topic>Imputation</topic><topic>Index numbers</topic><topic>Laptop computers</topic><topic>Multilateral index number methods</topic><topic>Portable media players</topic><topic>Price comparisons</topic><topic>Price indexes</topic><topic>Price indices</topic><topic>Product quality</topic><topic>Quality adjustment</topic><topic>Regression analysis</topic><topic>Scanner data</topic><topic>Scanners</topic><topic>Studies</topic><topic>Transitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Haan, Jan</creatorcontrib><creatorcontrib>Krsinich, Frances</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of business & economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Haan, Jan</au><au>Krsinich, Frances</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes</atitle><jtitle>Journal of business & economic statistics</jtitle><date>2014-07-03</date><risdate>2014</risdate><volume>32</volume><issue>3</issue><spage>341</spage><epage>358</epage><pages>341-358</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>The recently developed rolling year GEKS procedure makes maximum use of all matches in the data to construct nonrevisable price indexes that are approximately free from chain drift. A potential weakness is that unmatched items are ignored. In this article we use imputation Törnqvist price indexes as inputs into the rolling year GEKS procedure. These indexes account for quality changes by imputing the "missing prices" associated with new and disappearing items. Three imputation methods are discussed. The first method makes explicit imputations using a hedonic regression model which is estimated for each time period. The other two methods make implicit imputations; they are based on time dummy hedonic and time-product dummy regression models and are estimated on bilateral pooled data. We present empirical evidence for New Zealand from scanner data on eight consumer electronics products and find that accounting for quality change can make a substantial difference.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/07350015.2014.880059</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-0015 |
ispartof | Journal of business & economic statistics, 2014-07, Vol.32 (3), p.341-358 |
issn | 0735-0015 1537-2707 |
language | eng |
recordid | cdi_proquest_journals_1552443504 |
source | Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Consumer electronics Consumer Price Index Economic indices Economic statistics Estimation methods Hedonic regression Imputation Index numbers Laptop computers Multilateral index number methods Portable media players Price comparisons Price indexes Price indices Product quality Quality adjustment Regression analysis Scanner data Scanners Studies Transitivity |
title | Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanner%20Data%20and%20the%20Treatment%20of%20Quality%20Change%20in%20Nonrevisable%20Price%20Indexes&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=de%20Haan,%20Jan&rft.date=2014-07-03&rft.volume=32&rft.issue=3&rft.spage=341&rft.epage=358&rft.pages=341-358&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2014.880059&rft_dat=%3Cjstor_proqu%3E43702765%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552443504&rft_id=info:pmid/&rft_jstor_id=43702765&rfr_iscdi=true |