Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles

We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2014-09, Vol.43 (9), p.3372-3378
Hauptverfasser: Shin, Yong Moo, Kim, Hyun-Jin, Jang, Seok Pil, Lee, Jong-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3378
container_issue 9
container_start_page 3372
container_title Journal of electronic materials
container_volume 43
creator Shin, Yong Moo
Kim, Hyun-Jin
Jang, Seok Pil
Lee, Jong-Hyun
description We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1–226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.
doi_str_mv 10.1007/s11664-014-3245-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1550969212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3392379891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-38d5c7552da8ae1343318c81549273e72fc3789a4c93360805de1f3c0fcb48fc3</originalsourceid><addsrcrecordid>eNp1kM2OFCEURonRxHb0AdyRGJcol58qatl2enSSiRq1E3eEpqiWsRpaLrPoR_CtpdIT48YVIfd8H5dDyEvgb4Dz_i0CdJ1iHBSTQmlmHpEVaCUZmO77Y7LisgOmhdRPyTPEO85Bg4EV-b1NP1zy4RhSpXmin0v2AdHt4xzrmbo00u0cfC3Ru5l-CRixLjzdn-kOwxJZH9g7h2Gkm3w8ZYw10Jv0E9s1VRdTTAe6m2txU0yBfl1vJNd0Pc_5TD-6lE-u1OjngM_Jk8nNGF48nFdkd739tvnAbj-9v9msb5lXSlcmzah9r7UYnXEBpJISjDftr4PoZejF5GVvBqf8IGXHDddjgEl6Pvm9Mm14RV5dek8l_7oPWO1dvi-pPWlBaz50gwDRKLhQvmTEEiZ7KvHoytkCt4txezFum3G7GLemZV4_NDtstqbSREX8GxSmBzBq4cSFwzZKh1D-2eC_5X8AGyCQeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550969212</pqid></control><display><type>article</type><title>Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles</title><source>SpringerLink Journals</source><creator>Shin, Yong Moo ; Kim, Hyun-Jin ; Jang, Seok Pil ; Lee, Jong-Hyun</creator><creatorcontrib>Shin, Yong Moo ; Kim, Hyun-Jin ; Jang, Seok Pil ; Lee, Jong-Hyun</creatorcontrib><description>We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1–226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3245-8</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cross-disciplinary physics: materials science; rheology ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Low temperature physics ; Materials Science ; Materials synthesis; materials processing ; Microstructure ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Physics ; Sintering ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2014-09, Vol.43 (9), p.3372-3378</ispartof><rights>TMS 2014</rights><rights>2015 INIST-CNRS</rights><rights>The Minerals, Metals &amp; Materials Society 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-38d5c7552da8ae1343318c81549273e72fc3789a4c93360805de1f3c0fcb48fc3</citedby><cites>FETCH-LOGICAL-c445t-38d5c7552da8ae1343318c81549273e72fc3789a4c93360805de1f3c0fcb48fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3245-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3245-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28711848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Yong Moo</creatorcontrib><creatorcontrib>Kim, Hyun-Jin</creatorcontrib><creatorcontrib>Jang, Seok Pil</creatorcontrib><creatorcontrib>Lee, Jong-Hyun</creatorcontrib><title>Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1–226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Low temperature physics</subject><subject>Materials Science</subject><subject>Materials synthesis; materials processing</subject><subject>Microstructure</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Sintering</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM2OFCEURonRxHb0AdyRGJcol58qatl2enSSiRq1E3eEpqiWsRpaLrPoR_CtpdIT48YVIfd8H5dDyEvgb4Dz_i0CdJ1iHBSTQmlmHpEVaCUZmO77Y7LisgOmhdRPyTPEO85Bg4EV-b1NP1zy4RhSpXmin0v2AdHt4xzrmbo00u0cfC3Ru5l-CRixLjzdn-kOwxJZH9g7h2Gkm3w8ZYw10Jv0E9s1VRdTTAe6m2txU0yBfl1vJNd0Pc_5TD-6lE-u1OjngM_Jk8nNGF48nFdkd739tvnAbj-9v9msb5lXSlcmzah9r7UYnXEBpJISjDftr4PoZejF5GVvBqf8IGXHDddjgEl6Pvm9Mm14RV5dek8l_7oPWO1dvi-pPWlBaz50gwDRKLhQvmTEEiZ7KvHoytkCt4txezFum3G7GLemZV4_NDtstqbSREX8GxSmBzBq4cSFwzZKh1D-2eC_5X8AGyCQeg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Shin, Yong Moo</creator><creator>Kim, Hyun-Jin</creator><creator>Jang, Seok Pil</creator><creator>Lee, Jong-Hyun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140901</creationdate><title>Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles</title><author>Shin, Yong Moo ; Kim, Hyun-Jin ; Jang, Seok Pil ; Lee, Jong-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-38d5c7552da8ae1343318c81549273e72fc3789a4c93360805de1f3c0fcb48fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Low temperature physics</topic><topic>Materials Science</topic><topic>Materials synthesis; materials processing</topic><topic>Microstructure</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Sintering</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Yong Moo</creatorcontrib><creatorcontrib>Kim, Hyun-Jin</creatorcontrib><creatorcontrib>Jang, Seok Pil</creatorcontrib><creatorcontrib>Lee, Jong-Hyun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Yong Moo</au><au>Kim, Hyun-Jin</au><au>Jang, Seok Pil</au><au>Lee, Jong-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>43</volume><issue>9</issue><spage>3372</spage><epage>3378</epage><pages>3372-3378</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1–226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3245-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2014-09, Vol.43 (9), p.3372-3378
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1550969212
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Cross-disciplinary physics: materials science
rheology
Electronics and Microelectronics
Exact sciences and technology
Instrumentation
Low temperature physics
Materials Science
Materials synthesis
materials processing
Microstructure
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Optical and Electronic Materials
Other topics in nanoscale materials and structures
Physics
Sintering
Solid State Physics
title Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Processability%20and%20Electrical%20Resistance%20by%20Use%20of%20Ag-Based%20Composite%20Inks%20Containing%20Ultrafine%20SAC305%20Alloy%20Nanoparticles&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Shin,%20Yong%20Moo&rft.date=2014-09-01&rft.volume=43&rft.issue=9&rft.spage=3372&rft.epage=3378&rft.pages=3372-3378&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3245-8&rft_dat=%3Cproquest_cross%3E3392379891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550969212&rft_id=info:pmid/&rfr_iscdi=true