Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction

Different sp2@sp3 core–shell structures are obtained on nanodiamond by using annealing treatment at increasingly higher temperatures. The resulting nanocarbons can serve as model catalysts to investigate the structural effect on the evolution and chemical nature of oxygen functional groups for oxida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2014-08, Vol.6 (8), p.2270-2275
Hauptverfasser: Sun, Xiaoyan, Wang, Rui, Zhang, Bingsen, Huang, Rui, Huang, Xing, Su, Dang Sheng, Chen, Tong, Miao, Changxi, Yang, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2275
container_issue 8
container_start_page 2270
container_title ChemCatChem
container_volume 6
creator Sun, Xiaoyan
Wang, Rui
Zhang, Bingsen
Huang, Rui
Huang, Xing
Su, Dang Sheng
Chen, Tong
Miao, Changxi
Yang, Weimin
description Different sp2@sp3 core–shell structures are obtained on nanodiamond by using annealing treatment at increasingly higher temperatures. The resulting nanocarbons can serve as model catalysts to investigate the structural effect on the evolution and chemical nature of oxygen functional groups for oxidative dehydrogenation reactions. We studied in situ reactions and characterization data and found that the initial existence of oxygen‐containing groups on a catalyst surface had a low contribution to the catalytic performance. The active oxygen species can be generated promptly in situ by the chemisorption of O2 under the reaction conditions and involved in catalytic dehydrogenation process following a redox mechanism. For different hybridized nanostructures, the same types of generated active oxygen groups show different catalytic capabilities, which can be regulated by the sp2‐hybridized carbon fraction of nanodiamond. The ketonic carbonyl groups formed on graphitic onion‐like carbon surface are more active and can improve the selectivity to alkenes significantly compared with the initial nanodiamond and traditional carbon nanotubes. Activate your oxygen: Active oxygen groups generated in situ on defective structures play a key role in the oxidative dehydrogenation reaction. The sp2‐hybridized onion‐like carbon structure favors the generation of highly reactive oxygen species strongly.
doi_str_mv 10.1002/cctc.201402097
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1550353116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3390116781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1167-a721072d4d0a08bb5942e4b6f24fb3d5864b957f0bbc3769cf16e06aab37f0933</originalsourceid><addsrcrecordid>eNo9kN1PwjAUxRejiYi--tzE5-HtunXrm2QomBCJgh9vTbt1Upzr7Aay_94Chqf70fO7pzmed41hgAGC2yxrs0EAOIQAWHzi9XBCY58kjJ0e-wTOvYumWQFQRuKo53X3G1OuW20qJKocvSiRtXqj2w6ZAg13vUKzbfepKjSvVaZVg5y0qYO7piYoNVb586UqS5QKK91LYSxqlztG52JPj9Syy61xF8Te5mBhqkvvrBBlo67-a997fbhfpBN_Ohs_psOprzF2fxZxgCEO8jAHAYmUEQsDFUpaBGEhSR4lNJQsiguQMiMxZVmBqQIqhCRuyQjpezeHu7U1P2vVtHxl1rZylhxHEZCIOB-nYgfVry5Vx2urv4XtOAa-y5bvsuXHbHmaLtLj5Fj_wOqmVdsjK-wXp7FLmb8_jfloMvoA-kb5M_kD1vJ_nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550353116</pqid></control><display><type>article</type><title>Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Xiaoyan ; Wang, Rui ; Zhang, Bingsen ; Huang, Rui ; Huang, Xing ; Su, Dang Sheng ; Chen, Tong ; Miao, Changxi ; Yang, Weimin</creator><creatorcontrib>Sun, Xiaoyan ; Wang, Rui ; Zhang, Bingsen ; Huang, Rui ; Huang, Xing ; Su, Dang Sheng ; Chen, Tong ; Miao, Changxi ; Yang, Weimin</creatorcontrib><description>Different sp2@sp3 core–shell structures are obtained on nanodiamond by using annealing treatment at increasingly higher temperatures. The resulting nanocarbons can serve as model catalysts to investigate the structural effect on the evolution and chemical nature of oxygen functional groups for oxidative dehydrogenation reactions. We studied in situ reactions and characterization data and found that the initial existence of oxygen‐containing groups on a catalyst surface had a low contribution to the catalytic performance. The active oxygen species can be generated promptly in situ by the chemisorption of O2 under the reaction conditions and involved in catalytic dehydrogenation process following a redox mechanism. For different hybridized nanostructures, the same types of generated active oxygen groups show different catalytic capabilities, which can be regulated by the sp2‐hybridized carbon fraction of nanodiamond. The ketonic carbonyl groups formed on graphitic onion‐like carbon surface are more active and can improve the selectivity to alkenes significantly compared with the initial nanodiamond and traditional carbon nanotubes. Activate your oxygen: Active oxygen groups generated in situ on defective structures play a key role in the oxidative dehydrogenation reaction. The sp2‐hybridized onion‐like carbon structure favors the generation of highly reactive oxygen species strongly.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201402097</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>alkanes ; Carbon ; dehydrogenation ; nanostructures ; Oxygen</subject><ispartof>ChemCatChem, 2014-08, Vol.6 (8), p.2270-2275</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201402097$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201402097$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zhang, Bingsen</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Su, Dang Sheng</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Miao, Changxi</creatorcontrib><creatorcontrib>Yang, Weimin</creatorcontrib><title>Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction</title><title>ChemCatChem</title><addtitle>ChemCatChem</addtitle><description>Different sp2@sp3 core–shell structures are obtained on nanodiamond by using annealing treatment at increasingly higher temperatures. The resulting nanocarbons can serve as model catalysts to investigate the structural effect on the evolution and chemical nature of oxygen functional groups for oxidative dehydrogenation reactions. We studied in situ reactions and characterization data and found that the initial existence of oxygen‐containing groups on a catalyst surface had a low contribution to the catalytic performance. The active oxygen species can be generated promptly in situ by the chemisorption of O2 under the reaction conditions and involved in catalytic dehydrogenation process following a redox mechanism. For different hybridized nanostructures, the same types of generated active oxygen groups show different catalytic capabilities, which can be regulated by the sp2‐hybridized carbon fraction of nanodiamond. The ketonic carbonyl groups formed on graphitic onion‐like carbon surface are more active and can improve the selectivity to alkenes significantly compared with the initial nanodiamond and traditional carbon nanotubes. Activate your oxygen: Active oxygen groups generated in situ on defective structures play a key role in the oxidative dehydrogenation reaction. The sp2‐hybridized onion‐like carbon structure favors the generation of highly reactive oxygen species strongly.</description><subject>alkanes</subject><subject>Carbon</subject><subject>dehydrogenation</subject><subject>nanostructures</subject><subject>Oxygen</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN1PwjAUxRejiYi--tzE5-HtunXrm2QomBCJgh9vTbt1Upzr7Aay_94Chqf70fO7pzmed41hgAGC2yxrs0EAOIQAWHzi9XBCY58kjJ0e-wTOvYumWQFQRuKo53X3G1OuW20qJKocvSiRtXqj2w6ZAg13vUKzbfepKjSvVaZVg5y0qYO7piYoNVb586UqS5QKK91LYSxqlztG52JPj9Syy61xF8Te5mBhqkvvrBBlo67-a997fbhfpBN_Ohs_psOprzF2fxZxgCEO8jAHAYmUEQsDFUpaBGEhSR4lNJQsiguQMiMxZVmBqQIqhCRuyQjpezeHu7U1P2vVtHxl1rZylhxHEZCIOB-nYgfVry5Vx2urv4XtOAa-y5bvsuXHbHmaLtLj5Fj_wOqmVdsjK-wXp7FLmb8_jfloMvoA-kb5M_kD1vJ_nQ</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Sun, Xiaoyan</creator><creator>Wang, Rui</creator><creator>Zhang, Bingsen</creator><creator>Huang, Rui</creator><creator>Huang, Xing</creator><creator>Su, Dang Sheng</creator><creator>Chen, Tong</creator><creator>Miao, Changxi</creator><creator>Yang, Weimin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope></search><sort><creationdate>201408</creationdate><title>Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction</title><author>Sun, Xiaoyan ; Wang, Rui ; Zhang, Bingsen ; Huang, Rui ; Huang, Xing ; Su, Dang Sheng ; Chen, Tong ; Miao, Changxi ; Yang, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1167-a721072d4d0a08bb5942e4b6f24fb3d5864b957f0bbc3769cf16e06aab37f0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alkanes</topic><topic>Carbon</topic><topic>dehydrogenation</topic><topic>nanostructures</topic><topic>Oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zhang, Bingsen</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Su, Dang Sheng</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Miao, Changxi</creatorcontrib><creatorcontrib>Yang, Weimin</creatorcontrib><collection>Istex</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiaoyan</au><au>Wang, Rui</au><au>Zhang, Bingsen</au><au>Huang, Rui</au><au>Huang, Xing</au><au>Su, Dang Sheng</au><au>Chen, Tong</au><au>Miao, Changxi</au><au>Yang, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction</atitle><jtitle>ChemCatChem</jtitle><addtitle>ChemCatChem</addtitle><date>2014-08</date><risdate>2014</risdate><volume>6</volume><issue>8</issue><spage>2270</spage><epage>2275</epage><pages>2270-2275</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Different sp2@sp3 core–shell structures are obtained on nanodiamond by using annealing treatment at increasingly higher temperatures. The resulting nanocarbons can serve as model catalysts to investigate the structural effect on the evolution and chemical nature of oxygen functional groups for oxidative dehydrogenation reactions. We studied in situ reactions and characterization data and found that the initial existence of oxygen‐containing groups on a catalyst surface had a low contribution to the catalytic performance. The active oxygen species can be generated promptly in situ by the chemisorption of O2 under the reaction conditions and involved in catalytic dehydrogenation process following a redox mechanism. For different hybridized nanostructures, the same types of generated active oxygen groups show different catalytic capabilities, which can be regulated by the sp2‐hybridized carbon fraction of nanodiamond. The ketonic carbonyl groups formed on graphitic onion‐like carbon surface are more active and can improve the selectivity to alkenes significantly compared with the initial nanodiamond and traditional carbon nanotubes. Activate your oxygen: Active oxygen groups generated in situ on defective structures play a key role in the oxidative dehydrogenation reaction. The sp2‐hybridized onion‐like carbon structure favors the generation of highly reactive oxygen species strongly.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/cctc.201402097</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2014-08, Vol.6 (8), p.2270-2275
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_1550353116
source Wiley Online Library Journals Frontfile Complete
subjects alkanes
Carbon
dehydrogenation
nanostructures
Oxygen
title Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20and%20Reactivity%20of%20Active%20Oxygen%20Species%20on%20sp2@sp3%20Core-Shell%20Carbon%20for%20the%20Oxidative%20Dehydrogenation%20Reaction&rft.jtitle=ChemCatChem&rft.au=Sun,%20Xiaoyan&rft.date=2014-08&rft.volume=6&rft.issue=8&rft.spage=2270&rft.epage=2275&rft.pages=2270-2275&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201402097&rft_dat=%3Cproquest_wiley%3E3390116781%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550353116&rft_id=info:pmid/&rfr_iscdi=true