An Algebraic Method for Decoding q-ary Codes via Submodules of Z^n

In this paper, by using a relation between binomial ideal and submodules of Z n in , a submodule associated with the integer programming (IP) problem is defined. By computing the reduced Gröbner basis (RGB) of the submodule, the decoding problem of non-binary q-ary codes is considered as an integer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2014-05, Vol.18 (5), p.857-860
Hauptverfasser: Aliasgari, Malihe, Sadeghi, Mohammad-Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 860
container_issue 5
container_start_page 857
container_title IEEE communications letters
container_volume 18
creator Aliasgari, Malihe
Sadeghi, Mohammad-Reza
description In this paper, by using a relation between binomial ideal and submodules of Z n in , a submodule associated with the integer programming (IP) problem is defined. By computing the reduced Gröbner basis (RGB) of the submodule, the decoding problem of non-binary q-ary codes is considered as an integer program problem. Decoding complexity is investigated and the effective factors in complexity are also determined. Furthermore, an example of the decoding method for a 3-ary code is provided.
doi_str_mv 10.1109/LCOMM.2014.030914.132773
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1549541481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6777393</ieee_id><sourcerecordid>3387990911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1521-87bca1e1e68730af98287c4d8af996d403b1b966fa928409754cf62feba05b093</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwC7hE4twR56NJjqMwQNq0A3DhQJS2yei0NVu6IvHvySji4teW_drygxAGMgEg-nZeLBeLCSXAJ4QRnQQYlZKdoBEIoTKawmnKidKZlFqdo4uuWxNCFBUwQnfTFk83K1dG21R44Q6focY-RHzvqlA37QrvMxu_cRFq1-GvxuKXvtyGut-kMnj8_tFeojNvN527-tMxeps9vBZP2Xz5-FxM51kFgkKmZFlZcOByJRmxXiuqZMVrlVKd15ywEkqd595qqjjRUvDK59S70hJREs3G6GbYu4th37vuYNahj206aUBwLThwBWlKDVNVDF0XnTe72GzTCwaIORIzv8TMkZgZiJmBWLJeD9bGOfdvy2XqacZ-ALGEZcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549541481</pqid></control><display><type>article</type><title>An Algebraic Method for Decoding q-ary Codes via Submodules of Z^n</title><source>IEEE Electronic Library (IEL)</source><creator>Aliasgari, Malihe ; Sadeghi, Mohammad-Reza</creator><creatorcontrib>Aliasgari, Malihe ; Sadeghi, Mohammad-Reza</creatorcontrib><description>In this paper, by using a relation between binomial ideal and submodules of Z n in , a submodule associated with the integer programming (IP) problem is defined. By computing the reduced Gröbner basis (RGB) of the submodule, the decoding problem of non-binary q-ary codes is considered as an integer program problem. Decoding complexity is investigated and the effective factors in complexity are also determined. Furthermore, an example of the decoding method for a 3-ary code is provided.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2014.030914.132773</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity theory ; Grobner basis ; group code ; integer programming ; IP networks ; Manganese ; Maximum likelihood decoding ; Vectors ; Z-module ; Zinc</subject><ispartof>IEEE communications letters, 2014-05, Vol.18 (5), p.857-860</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1521-87bca1e1e68730af98287c4d8af996d403b1b966fa928409754cf62feba05b093</citedby><cites>FETCH-LOGICAL-c1521-87bca1e1e68730af98287c4d8af996d403b1b966fa928409754cf62feba05b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6777393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6777393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aliasgari, Malihe</creatorcontrib><creatorcontrib>Sadeghi, Mohammad-Reza</creatorcontrib><title>An Algebraic Method for Decoding q-ary Codes via Submodules of Z^n</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>In this paper, by using a relation between binomial ideal and submodules of Z n in , a submodule associated with the integer programming (IP) problem is defined. By computing the reduced Gröbner basis (RGB) of the submodule, the decoding problem of non-binary q-ary codes is considered as an integer program problem. Decoding complexity is investigated and the effective factors in complexity are also determined. Furthermore, an example of the decoding method for a 3-ary code is provided.</description><subject>Complexity theory</subject><subject>Grobner basis</subject><subject>group code</subject><subject>integer programming</subject><subject>IP networks</subject><subject>Manganese</subject><subject>Maximum likelihood decoding</subject><subject>Vectors</subject><subject>Z-module</subject><subject>Zinc</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwC7hE4twR56NJjqMwQNq0A3DhQJS2yei0NVu6IvHvySji4teW_drygxAGMgEg-nZeLBeLCSXAJ4QRnQQYlZKdoBEIoTKawmnKidKZlFqdo4uuWxNCFBUwQnfTFk83K1dG21R44Q6focY-RHzvqlA37QrvMxu_cRFq1-GvxuKXvtyGut-kMnj8_tFeojNvN527-tMxeps9vBZP2Xz5-FxM51kFgkKmZFlZcOByJRmxXiuqZMVrlVKd15ywEkqd595qqjjRUvDK59S70hJREs3G6GbYu4th37vuYNahj206aUBwLThwBWlKDVNVDF0XnTe72GzTCwaIORIzv8TMkZgZiJmBWLJeD9bGOfdvy2XqacZ-ALGEZcI</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Aliasgari, Malihe</creator><creator>Sadeghi, Mohammad-Reza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201405</creationdate><title>An Algebraic Method for Decoding q-ary Codes via Submodules of Z^n</title><author>Aliasgari, Malihe ; Sadeghi, Mohammad-Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1521-87bca1e1e68730af98287c4d8af996d403b1b966fa928409754cf62feba05b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Complexity theory</topic><topic>Grobner basis</topic><topic>group code</topic><topic>integer programming</topic><topic>IP networks</topic><topic>Manganese</topic><topic>Maximum likelihood decoding</topic><topic>Vectors</topic><topic>Z-module</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliasgari, Malihe</creatorcontrib><creatorcontrib>Sadeghi, Mohammad-Reza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aliasgari, Malihe</au><au>Sadeghi, Mohammad-Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algebraic Method for Decoding q-ary Codes via Submodules of Z^n</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2014-05</date><risdate>2014</risdate><volume>18</volume><issue>5</issue><spage>857</spage><epage>860</epage><pages>857-860</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this paper, by using a relation between binomial ideal and submodules of Z n in , a submodule associated with the integer programming (IP) problem is defined. By computing the reduced Gröbner basis (RGB) of the submodule, the decoding problem of non-binary q-ary codes is considered as an integer program problem. Decoding complexity is investigated and the effective factors in complexity are also determined. Furthermore, an example of the decoding method for a 3-ary code is provided.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2014.030914.132773</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2014-05, Vol.18 (5), p.857-860
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_1549541481
source IEEE Electronic Library (IEL)
subjects Complexity theory
Grobner basis
group code
integer programming
IP networks
Manganese
Maximum likelihood decoding
Vectors
Z-module
Zinc
title An Algebraic Method for Decoding q-ary Codes via Submodules of Z^n
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algebraic%20Method%20for%20Decoding%20q-ary%20Codes%20via%20Submodules%20of%20Z%5En&rft.jtitle=IEEE%20communications%20letters&rft.au=Aliasgari,%20Malihe&rft.date=2014-05&rft.volume=18&rft.issue=5&rft.spage=857&rft.epage=860&rft.pages=857-860&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2014.030914.132773&rft_dat=%3Cproquest_RIE%3E3387990911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549541481&rft_id=info:pmid/&rft_ieee_id=6777393&rfr_iscdi=true